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We compute the normalisation factor for the large order asymptotics of per-
turbation theory for the self-avoiding manifold (SAM) model describing flexible
tethered (D-dimensional) membranes in d-dimensional space, and the ε-expan-
sion for this problem. For that purpose, we develop the methods inspired from
instanton calculus, that we introduced in a previous publication (Nucl. Phys.
B 534 (1998) 555), and we compute the functional determinant of the fluctua-
tions around the instanton configuration. This determinant has UV divergences
and we show that the renormalized action used to make perturbation theory
finite also renders the contribution of the instanton UV-finite. To compute this
determinant, we develop a systematic large-d expansion. For the renormalized
theory, we point out problems in the interplay between the limits ε→ 0 and
d→∞, as well as IR divergences when ε=0. We show that many cancellations
between IR divergences occur, and argue that the remaining IR-singular term
is associated to amenable non-analytic contributions in the large-d limit when
ε=0. The consistency with the standard instanton-calculus results for the self-
avoiding walk is checked for D=1.

KEY WORDS: Self-avoiding membranes; instanton calculus; instanton; large
orders; perturbation theory; renormalization; tethered membranes.

1. INTRODUCTION

Flexible polymerized two-dimensional films (tethered or polymerized mem-
branes)(1) have very interesting statistical properties (for a review see refs.
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2–4). In these objects there is a competition between entropy, which
favors crumpled or folded configurations as for polymers, steric interac-
tions (self-avoidance), which tend to swell the membranes, and bending
rigidity which favors flat configurations. Internal disorder, inhomogeneities
and anisotropy may also play an important role, that we shall not discuss
here (see the chapters 10–12 in refs. 3 and 4 for a recent review of these
effects).

If one does not take into account self-avoidance, theoretical argu-
ments (mean-field and renormalization-group calculations) and numerical
simulations show two phases: (1) A high-temperature/low-rigidity crum-
pled phase, where the membrane is crumpled with infinite Hausdorff
dimension, and where bending rigidity is irrelevant; (2) a low-temperature
(flat) phase with large effective rigidity and Hausdorff dimension two.(5,6)

In the high-temperature (crumpled) phase, steric interactions (self-
avoidance) are physically relevant, and will swell the membrane, as for
polymers. Two scenarios are possible: Either the membrane is flat with
Hausdorff dimension two (as for high bending rigidity), or it is crum-
pled swollen with Hausdorff dimension larger than two. For large imbed-
ding dimension d a Gaussian variational approximation can be argued to
become exact, predicting a Haussdorff dimension dH=d/2. It is non-triv-
ial whether this swollen phase exists down to d=3. Numerical simulations
indicate that only a flat phase exists in d = 3; for details see the discus-
sion in refs. 3 and 4. However, simulations are for rather small systems. It
therefore remains important to have a solid theoretical understanding.

The theory in question is a generalization of the Edwards model for
polymers.(10,11) It was proposed in refs. 7–9, and is a model of self-avoid-
ing manifolds (or membranes), hereafter denoted the SAM model. It is
amenable to a treatment by perturbation theory (in the coupling constant
of steric interactions) and to a perturbative renormalization group analysis
which leads to a Wilson–Fisher like ε-expansion for estimating the scaling
exponents and the critical properties of the swollen phase.

This SAM model is quite interesting at the theoretical level for several
reasons:

1. It can only be defined as a non-local field-theory over the inter-
nal two-dimensional space of the manifold, with infinite-ranged multi-local
interactions. Therefore the applicability of renormalization theory and of
renormalization group techniques is a non-trivial issue. A proof of pertur-
bative renormalizability to all orders was finally given in refs. 12 and 13.

2. The model is in fact defined through a double dimensional con-
tinuation, where both the dimension of space d and the internal dimension
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D of the manifold are analytically continued to non-integer values. The
physical case of two-dimensional membranes is always in the strong-cou-
pling regime where the engineering dimension of the coupling, ε= (2D−
(2−D)/2)d is ε=4 for any space dimension d.

3. The analytical study of this model at the non-perturbative level is
still in its infancy, since it is a technically quite difficult problem. A first
step was made by the two present authors for the large orders of pertur-
bation theory in ref. 14. It is this issue of the large-order asymptotics of
the SAM model that we treat in this paper.

For quantum mechanics(15–17) and for local quantum field theories(18) (such
as the Laudau–Ginzburg–Wilson φ4 theories) the large-order asymptotics
of perturbation theory are known to be controlled by (in general complex)
finite-action solutions of the classical equation of motion called “instan-
tons”. More precisely the large-order asymptotics are described by semi-
classical approximations around these instantons. We refer for instance to
ref. 19 for a review of this “instanton calculus”.

In ref. 14 we have shown that similarly for the SAM model there
exists an instanton, which controls its large-order asymptotics. This inst-
anton is a scalar field configuration in the external d-dimensional space,
which extremizes a highly non-local effective-action functional, and which
cannot be computed exactly. We also showed that remarkable simplifi-
cations occur in the large-d limit, which suggests that a systematic 1/d
expansion can be constructed to study the instanton, but also that already
the first 1/d correction to the large-d limit is plagued with infrared (IR)
divergences whose origin was unclear. In ref. 14 we only studied the inst-
anton at the classical level, i.e. the (non-local) equation of motion and the
properties of its solution, the instanton.

In this article we present the full semi-classical analysis of the instan-
ton for the SAM model, derive its connection with the large-order asympt-
otics, and study the UV divergences and renormalization necessary for the
instanton. For this purpose, many new calculational techniques had to be
developed, hence the length of the paper and its technical character. More
precisely, the main new results are:

1. We first show in much more details than in ref. 14 how the instan-
ton emerges from the functional integral, which defines the continuum SAM
model. In particular we treat properly and carefully the zero-modes for the
instanton, how the contour of functional integration has to be deformed in
the complex saddle-point method, as well as various normalization prob-
lems for the functional integration. This is done in Sections 3.1 and 3.2.
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2. Using this, we obtain the contribution of the fluctuations around
the instanton in the semi-classical approximation as the determinant of a
non-local kernel operator in d-dimensional space, and derive the normali-
zation factor for the large-order asymptotics (Sections 3.3–3.5).

3. We analyze completely the UV divergences of this determinant,
and show that in the renormalized theory these UV divergences for the
instanton determinant factor are canceled by the one-loop perturbative
counterterm of the renormalized theory, making the final asymptotics UV
finite. This is an important check of the consistency of the SAM model,
since the original proof of renormalizability is only valid in perturbation
theory. (In a field theoretic language it is not a background-independent
proof). This is done in Section 4. Our argument is based on the exten-
sion of the perturbative renormalizability argument to the general case of
ensembles of interacting manifolds in an external background potential.

4. In ref. 14 the instanton equation was solved within a variational
approximation. In sect. V we study how this approximation can be applied
to the explicit calculation of the instanton determinant factor. We first
show that a direct variational calculation gives a result which is too naive,
and does not take properly into account the UV fluctuations. We then pro-
pose a systematic framework to construct an expansion around the vari-
ational approximation, developing ideas that we proposed in ref. 14. We
then show that this framework gives the leading term for the instanton
determinant factor in the large-d limit.

5. We are thus able to construct a systematic 1/d expansion for the
instanton calculus, and show that this expansion is well defined as long
as the SAM is super renormalizable, i.e. ε >0 (no UV divergences in per-
turbation theory, apart from vacuum energy terms). The leading and first
subleading terms are computed explicitly for the determinant factor and
the normalization factor of the zero mode of the instanton. These calcu-
lations involve a new non-trivial diagrammatic expansion. This is done in
Section 6.

6. Finally we study the 1/d expansion for the renormalized theory at
ε=0. We show that, at variance with the instanton calculus for local field
theories, some subtle issues arise for the SAM model. Indeed, we show
that already at leading order in d, the limits d→∞ and ε→ 0 do not
commute, and that some care is needed in order to obtain the instanton
determinant factor for the renormalized theory at large d. We then show
that the subleading terms of the 1/d expansion are plagued with IR diver-
gences at ε= 0, generalizing the results of ref. 14. We analyze completely
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these IR divergences at the first subleading order, and show that many
compensations occur, leaving a single IR-singular term associated with a
single eigenmode for the fluctuations around the instanton, namely the
unstable eigenmode generated by global dilation for the instanton. This
analysis of the renormalized theory is done in Section 7.

To summarize, we have performed a non-trivial check of the consis-
tency of the model, in particular of its renormalization, in a non-pertur-
bative regime, and we have developed the tools to compute the large-order
asymptotics of the SAM model.

Appendices contain more technical computations and details about
the normalizations. In particular in Appendix C we explicitly check that
in the special case of the self-avoiding polymer (D = 1) we recover the
large-order asymptotics of the Edwards model obtained by field theo-
retical methods (using instanton calculus and the well known equiva-
lence between the Edwards model and the O(n= 0) φ4 Landau Ginzburg
model).(20,21) This provides a check of the consistency of the SAM model.

2. THE MODEL

2.1. The Non-interacting Manifold

First we define the model for the Gaussian non-interacting manifold
(free or phantom manifold). Of course this model reduces to a massless
free field, but we reconsider it closely in order to fix properly the normal-
ization for the measure and for the definition of the observables, and for
the treatment of the zero modes.

2.1.1. The Model and its Action

We consider a manifold M with a finite size, as a closed D-dimen-
sional manifold M, with a fixed internal (or intrinsic) Riemannian struc-
ture, given by a metric tensor g=gµν(x). x= (xµ; µ=1, . . . ,D) describes
(a system of) local coordinates on M. From now on the internal volume
of M, Vol(M) and its internal size L are defined as

Vol(M) =
∫

M
dDx
√
g, L = Vol(M)1/D (2.1)

with g=det[g]. The manifold is embedded in external (or bulk) d-dimen-
sional Euclidean space R

d . This embedding is described by the field r=
{ra; a=1, . . . , d}
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M→R
d , x→ r(x). (2.2)

We shall use dimensional regularization in this paper by considering that
the internal dimension D of the manifold is 0<D < 2 non-integer. See
the reference paper(13) for a more precise discussion of how we can define
a finite membrane within dimensional regularization. In practice we can
restrict ourselves to the case of a square D-dimensional torus of size L,
TD=

(
R
D/(L ·Z)D), with flat metric gµν = δµν .

We first consider the free non-interacting manifold (phantom mem-
brane). The manifold may fluctuate freely in external d-dimensional space.
Its free energy is given by the Gaussian local elastic term S0, which is the
integral of the square of the gradient of the field r

S0[r] =
∫

M
1
2
(∇r)2 =

∫
dDx
√
g

1
2
gµν∂µr · ∂νr. (2.3)

This is nothing but the Euclidean action for a free massless field (with d

components) living on M. The manifold may (and does) freely intersect
itself, as does a random Brownian walk in d�4 space dimensions.

2.1.2. The Partition Function

The partition function for the free manifold is thus given by the func-
tional integral

Z0 =
∫

D[r] e−S0[r], (2.4)

where D[r] is the standard functional measure for the free massless field r
(see Appendix A for details and the normalization used in this paper).

There is an infinite factor in Z0 (the volume of bulk space Vol(Rd ))
coming from the translational zero mode of the manifold. This can be iso-
lated by choosing a specific point x0 on the manifold and a specific point
r0 in bulk space, and by defining the partition function Z0 for a marked
manifold

Z0 = Z0(r0) =
∫

D[r] δd(r(x0)− r0) e
−S0[r] (2.5)

Z0(r0) is IR finite and does not depend on the choice of r0 or of x0. We
have formally

Z0 =
∫
dd r0 Z0(r0) = Vol(Rd)Z0. (2.6)
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The partition function Z0 is found to be related to the determinant
of the Laplacian operator over M through

Z0(r0) =
[
det′ [−�] ·2π/Vol(M)

]−d/2
, (2.7)

where det′ [−�] is the product of the non-zero eigenvalues of (minus)
the Laplacian operator �= g−1/2∂µg

µν∂ν on M. Vol(M)= ∫ dDx
√
g is

the internal volume of the manifold. This last term comes from the
proper treatment of the translational zero mode of the Laplacian (see
Appendix A).

The determinant det′ [−�] is ultra-violet (UV) divergent, and is
defined through a zeta-function regularization (for a manifold M with
non-integer dimension D �= 1 or 2 this is equivalent to dimensional regu-
larization)

log(det′ [−�]) = −ζ ′(0), ζ(s)= tr′((−�)−s). (2.8)

The zeta-function ζ(s) is defined by analytic continuation from Re(s)
large. tr′ means the trace over the space orthogonal to the kernel of �.
ζ(s), scales with the size of M as

ζ(s) = [Vol(M)]2s/D ζ̃ (s), (2.9)

where the “normalized zeta-function” ζ̃ (s) depends on the shape of the
manifold but not on its size (scale invariance). In the absence of a con-
formal anomaly, as this is the case for the generic case of D non-integer
we have the exact identity

ζ(0) = −1. (2.10)

(This factor comes from the contribution of the subtracted zero mode in
the determinant). Hence the partition function reads

Z0(r0) = [Vol(M)]−d(2−D)/(2D)
[
eζ̃
′(0)

2π

]d/2
. (2.11)

The last term is a “form factor” depending on the shape of M.
For two-dimensional manifolds (D=2), the conformal anomaly gives

an additional scale factor of the form |Lµ0|χ d/6, where L=Vol(M)1/D is
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the size of M, µ0 the regularization mass scale, required to define properly
the measure in the functional integral (see Appendix A), and χ the Eul-
er characteristics of the membrane. We shall not discuss this any further,
since this is not relevant for the problem treated here, where we consider
manifolds with D<2.

2.2. The Interacting Self-Avoiding Manifold

2.2.1. The Action

The steric self-avoiding interaction is introduced by adding a two-
body repulsive contact interaction term of the form

∫
x

∫
y
δd(r(x)− r(y)) =

∫
M
dDx

√
g(x)

∫
M
dDy

√
g(x) δd(r(x)− r(y)),

(where δd(r) is the Dirac distribution in the external space R
d ) to the

action, which is now

S[r, b]=
∫

M
1
2
(∇r)2 + b

2

∫
x

∫
y
δd(r(x)− r(y)), (2.12)

where b>0 is the self-avoidance coupling constant. This is similar to what
is done in the Edwards model for polymers.

2.2.2. The Partition Functions

The partition function for the self-avoiding manifold is

Z(r0, b)=
∫

D[r] δd(r(x0)− r0) e
−S[r,b], Z(b) =

∫
dd r0 Z(r0, b).

(2.13)

These partition functions are defined in perturbation theory, within a
dimensional regularization scheme, i.e. by analytic continuation in the
internal dimension D.

If the internal coordinate x has engineering dimension 1, the external
coordinate r has engineering dimension ν0 given by (i.e. [r]∼ [x]ν0 )

ν0 = (2−D)/2 (2.14)
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and the coupling constant b has engineering dimension −ε (i.e. [b]∼ [x]−ε)
with

ε = 2D− (2−D)d/2. (2.15)

As usual in polymer and membrane problems, we shall consider
mainly the normalized partition function Z(b), defined by the ratio of the
interacting partition function for the interacting manifold M, divided by
the partition function for the same manifold M, but free.

Z(b) = Z(b)/Z0 = Z(r0, b)/Z0(r0). (2.16)

Let

L = (Vol(M))1/D, Vol(M) =
∫

M
dDx

√
g(x) (2.17)

be the internal size of the manifold. The normalized partition function has
a perturbative series expansion in powers of b, of the form

Z(b) = 1 +
∞∑
k=1

Zk
(
bLε

)k
, (2.18)

where the coefficients Zk depend only on the shape of the manifold, on its
internal dimension D, and on the external dimension d. These coefficients
are given by the expectation value in the massless free theory defined by
the free action S0 of the bi-local operators corresponding to the interac-
tion term

Zk = (−1)k

k! 2k

∫∫
x1,y1

· · ·
∫∫

xk,yk

〈 ∏
i=1,k

δd(r(xi)− r(yi))
〉
0 (2.19)

with 〈. . . 〉0 the expectation value w.r.t. S0[r], see (2.3).

2.2.3. Observables and Correlation Functions in External Space

We shall be mainly interested in correlations functions, which corre-
spond to observables which are global for the manifold (i.e. do not depend
on the internal position of specific points on the manifold), but which
may be local in external space (i.e. do depend on the position of specific
points in the external space). These observables are the simplest ones. In
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particular for the case D = 1 (polymers) these observables have a direct
interpretation in terms of correlation functions of local operators in the
corresponding local field theory in external d-dimensional space.

The observables involve the manifold density ρ(r). We define the man-
ifold density at the point r1, ρ(r1), as the functional of the field r(x)

ρ(r1; r) =
∫

x
δd(r(x)− r1). (2.20)

The N -point density correlator R(N)(r1, . . . , rN) for the interacting mani-
fold is defined as

R(N)(r1, . . . , rN ;b) =
∫

D[r]
N∏
i=1

ρ(ri; r) e−S(r,b). (2.21)

Obviously the one-point density correlator is related to the partition func-
tion (for a one-point marked manifold) by

R(1)(r0;b) = Vol(M)Z(r0, b). (2.22)

Ratios of density correlators define expectation values of densities. For
instance, the expectation value (ev) of a product of N density operators
ρ(ri ) for a manifold constrained to be attached to a point r0 is the ratio

〈ρ(r1), . . . , ρ(rN)〉r0,b = R(N+1)(r0, r1, . . . , rN ;b)/R(1)(r0, b). (2.23)

As for the partition functions, it is more convenient to normalize
the density correlators with respect to the partition function for the free
manifold. We thus define the normalization for the normalized density
correlators, by

R(N)(r1, . . . , rN ;b) = R(N)(r1, . . . , rN ;b)
/

Vol(M)Z0. (2.24)

In particular the normalized one-point correlator coincides with the nor-
malized partition function

R(1)(r1;b) = Z(b) (2.25)

and is independent of r1.
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These observables have a perturbative series expansion in the coupling
constant b. In particular they scale with the size L of the manifold as

R(N)(r1, . . . , rN ;b,L) = LN(ε−D) ·R(N)(r1L
−ν0 , . . . , rN L−ν0;bLε)

(2.26)

and

R(N)(r1, . . . , rN ;b,L) = L(N−1)(ε−D) ·R(N)(r1L
−ν0 , . . . , rN L−ν0;bLε).

(2.27)

2.2.4. Global Quantities and Gyration Radius Moments

We define the moments of order k for the gyration radius (in short
the kth gyration moment) R(k)gyr of the manifold by

R(k)gyr=
∫

x1

∫
x2
|r(x1)− r(x2)|k∫

x1

∫
x2

1
. (2.28)

The standard gyration radius is Rgyr=
√

R(2)gyr. The expectation value R(k)
gyr

of the kth gyration moment R(k)gyr for the interacting manifold is thus (for
k>0)

R(k)
gyr = 〈R(k)gyr〉 =

1
Vol(M)2

∫
r1

∫
r2

|r1− r2|k R(2)(r1, r2;b). (2.29)

2.3. UV Divergences and Perturbative Renormalization

Using dimensional regularization, the perturbative expansion for the
partition function and the observables is known to be UV finite for

0<D<2 and D<ε i.e. d <
2D

2−D. (2.30)

As long as we deal with finite-size manifolds (L<∞), perturbation theory
is free from IR divergences (which occur for infinite manifolds since per-
turbation theory is made around the free-manifold theory, which is a free
massless scalar field in D�2 dimensions).
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The perturbative expansion suffers from short-distance (UV) diver-
gences when

D � ε. (2.31)

These UV divergences come from the short-distance behavior of the expec-
tation values, which appear as integrands in the integrals, when the dis-
tance between several points xi and yj goes to zero. Using dimensional
regularization these divergences appear as poles in ε (d being fixed), or
equivalently as lines of singularity in the (d,D) plane.

As proved in ref. 13, these UV divergences can be studied within a
multi-local operator product expansion (MOPE) which generalizes Wil-
son’s OPE of local field theory. As a consequence, these UV divergences
are proportional to the insertion of multi-local operators, and are amena-
ble to renormalization theory.

The MOPE formalism and dimensional analysis show that for 0<ε�
D there is a finite number of divergences, with poles at

ε = D/n, n∈N+. (2.32)

These divergences are proportional to insertions of the identity opera-
tor 1 (with dimension 0). The model is super-renormalizable for ε >0 and
these divergences are subtracted by adding to the action a local counter-
term proportional to the volume of the manifold (i.e. to the integral of the
identity operator 1).

�S(r) ∝
∫

x
1 = Vol(M) . (2.33)

These divergences and the corresponding counterterm are constant terms,
independent of the configuration of the manifold, i.e. of the field r, and
they disappear in the observables given by ratios of correlators such as the
ev 〈ρ(r1) · · ·ρ(rN)〉r0 and the normalized correlators R(N).

For ε = 0 the model has an infinite number of divergences. These
divergences are proportional to the insertion of the two operators pres-
ent in the original action S. This means that the theory is renormalizable,
and that it can be made UV-finite by adding to the action counterterms
of the same form than those of the original action. In other words, one
can construct in perturbation theory a renormalized action

Sr(r;br,µ) = Z(br)

2

∫
x
(∇r)2 + brµ

εZb(br)

2

∫
x

∫
y
δd(r(x)− r(y)),

(2.34)
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where br is the dimensionless renormalized coupling constant, Z(br) and
Zb(br) the wave-function and the coupling-constant renormalization fac-
tors, and µ is the renormalization momentum scale, while r(x) is now the
renormalized field. This renormalized action is such that the renormalized
correlation functions

R(N)
r (r1, . . . , rN, br,µ) =

∫
D[r]

N∏
i=1

ρ(ri , r) e−Sr (r;br,µ) (2.35)

have a perturbative series expansion in br which is UV finite for ε�0 and
stays finite for ε = 0. For a finite manifold with size L the renormalized
perturbation theory is still IR finite.

From the standard arguments of renormalization group (RG) the-
ory the renormalized theory describes the universal large-distance scaling
behavior of self-avoiding manifolds. One can write RG equations which
tell how the observables scale with the size of the manifold for ε>0. When
expressed in terms of the renormalized observables and the renormalized
coupling, these RG equations have a regular limit (at least in perturbation
theory) as ε→0+. As a consequence one can construct an ε-expansion à
la Wilson–Fisher for the scaling exponents.

2.4. Effective Non-local Model in External Space

As shown in ref. 14, to study the large-order behavior of the SAM
model as well as its large-d behavior, it is necessary to reformulate the
model as an effective non-local model for an auxiliary composite field V (r)
in the external d-dimensional space.We recall this reformulation.

2.4.1. Auxiliary Fields and Effective Action

First we recall the auxiliary field ρ(r) (local manifold density) defined
in (2.20),

ρ(r)=
∫

x∈M
δd(r(x)− r) (2.36)

and its conjugate field V (r), which is the Lagrange multiplier for the above
constraint, such that

1 =
∫

D[V ]D[ρ] exp
(∫

dd rV (r)
[
ρ(r)−

∫
M
δd(r(x)− r)

])
. (2.37)
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ρ is a real field, while V is imaginary, and has to be integrated from −i∞
to +i∞ in the functional integral. Equivalently the functional measures
for ρ and V are formally

∫
D[ρ]=

∫ ∞
0

∏
r

dρ(r)≡
∫ ∞
−∞

∏
r

dρ(r),
∫

D[V ]=
∫ i∞

−i∞

∏
r

dV (r)

2iπ
.

(2.38)

We now insert (2.37) in the functional integral. Since the interaction term
can be written as

∫
x

∫
y
δd(r(x)− r(y)) =

∫
r
ρ(r)2, (2.39)

the integral over the field ρ is Gaussian and can be performed explicitly.
We obtain for the partition function

Z(b)=
∫

D[r]D[V ] exp
[
−
∫

x

(
1
2
(∇xr)2+V (r)

)
+ 1

2b

∫
r
V (r)2

]
.

(2.40)

Note that the functional measure D[V ] over V [r] is now normalized so
that

∫
D[V ] exp

(
1

2b

∫
r
V (r)2

)
= 1 (2.41)

and depends explicitly on the coupling constant b.
This functional integral describes a free (not self-interacting) manifold

fluctuating in a random annealed potential V (r). This is a simple general-
ization of the reformulation of the SAW problem into a random walk in
a random annealed potential.

Now we integrate over the field r(x) and define the effective free
energy FM[V ] for the non-interacting (phantom) manifold M in the exter-
nal potential V (r) by

exp (−FM[V ]) =
∫

D[r] exp
[
−
∫

x

(
1
2
(∇xr)2+V (r)

)]
. (2.42)
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We are left with the effective action for the field V , SM[V ], which is given
by

SM[V ] = FM[V ] − 1
2b

∫
r
V (r)2 (2.43)

and is a non-local functional of the potential V . The partition function is
now given by a functional integral over the potential V alone

Z(b) =
∫

D[V ] exp
[
−FM[V ] + 1

2b

∫
r
V (r)2

]

=
∫

D[V ] exp [−SM[V ]] . (2.44)

2.4.2. Correlation Functions for Global Observables

The same transformation can be used to compute the density correla-
tors R(N) and the corresponding correlation functions as ev of observables
with the effective action S[V ]. Indeed inserting a density operator ρ(r) in
the original functional integral (2.13) over r(x) amounts to insert a func-
tional derivative with respect to the conjugate field V (r) in the functional
integral (2.44) over V (r).

ρ(r) → δ

δV (r)
, (2.45)

so that

R(N)(r1, . . . , rN ;b) =
∫

D[V ] exp
[−FM[V ]

] δ

δV (r1)
· · · δ

δV (rN)

× exp
[

1
2b

∫
r
V (r)2

]
. (2.46)

For instance the two-point correlator is

R(2)(r1, r2, b)

=
∫

D[V ]
[

1
b2
V (r1)V (r2) + 1

b
δd(r1− r2)

]
e−FM[V ]+(1/2b) ∫r V (r)

2

= 1
b2
Z(b) 〈V (r1)V (r2)〉 + 1

b
δd(r1− r2). (2.47)
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Similarly, for the moments of order k of the gyration radius (defined by
(2.20)) we get (for k>0)

R(k)
gyr =

1
b2

1
Vol(M)2

∫
r1

∫
r2

|r1− r2|k
〈
V (r1)V (r2)

〉
, (2.48)

where 〈 〉 denotes the average over V with the effective action SM[V ]
given by Eq. (2.44).

3. LARGE ORDERS OF PERTURBATION THEORY AND INSTANTON

CALCULUS

3.1. Instanton and Large Orders in Quantum (Field) Theory

3.1.1. Instanton Semi-classics

To fix our normalizations let us first recall the basics of instanton
calculus in quantum mechanics and quantum field theory. We consider a
model defined by the functional integral over a field φ(r) with a classical
action S[φ] and a (dimensionless) coupling constant g. The partition func-
tion is

Z =
∫

D[φ] e−(1/g)S[φ]. (3.1)

The functional measure D[φ] over φ is defined from the so-called DeWitt
metric G on classical field configuration (super)space. We choose it to be
local and translationally invariant, so it must be of the form

G(δφ, δφ) = µ2
0

2πg

∫
dd r |δφ(r)|2 = µ2

0

2πg
‖δφ‖22 (3.2)

‖ ·‖2 is the L2 norm. This metric depends explicitly on an (arbitrary) nor-
malization mass scale µ̃0=µ0/

√
g. The corresponding measure over field

(super)space is (formally) D[φ]=∏r dφ(r)
√

detG. It is such that

∫
D[φ] e−(µ

2
0/2g)

∫
r φ

2 = 1. (3.3)

(Note that the factor of g has been introduced for convenience, to have
the same functional dependence on g for the measure in (3.3) and the
Boltzmann factor in (3.1).)
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We assume that there is a classical vacuum (field configuration) φ0
which minimizes the action S, which is constant (φ0(r)=φ0) and which is
unique (no zero modes around the classical vacuum). In the semi-classical
approximation the contribution of φ0 to the partition function is simply

Z
classical vacuum←−−−−−−−−−−− e−(1/g)S[φ0]

(
Det

[
S′′[φ0]/µ2

0

])−1/2
, (3.4)

where S′′ is the Hessian operator, with kernel

S′′[φ](r1, r2) = δ2S[φ]
δφ(r1)δφ(r2)

. (3.5)

Now we assume that there are also instanton configurations which con-
tribute to the functional integral. These instantons are non-constant field
configurations φinst(r; za), which are classical solutions of the field equa-
tions, and thus local extrema of the action S, i.e. S′[φinst]=0, with a finite
action Sinst = S[φinst]. In general, the set of instantons with action Sinst
is a finite-dimensional subspace, called the instanton moduli space. We
denote z= {za, a= 1,m} a (local system of) collective coordinates on the
m-dimensional moduli space of the instantons with action Sinst. The col-
lective coordinate z must include the position of the instanton rinst (d
moduli), its size if the action S is scale invariant, and in addition the inter-
nal degrees of freedom of the instanton if needed.

The contribution of the instanton to the functional integral is also
given by a semi-classical formula. We must separate the integration over
the instanton moduli space Mz from the integration over the field fluctu-
ations transverse to the moduli space Mz, since the Hessian S′′[φinst] has
now δinst zero-modes ∂aφinst= (∂φinst[z]/∂za). The moduli space integration
is then done explicitly. For that purpose, we must consider the restriction
of the metric G to the instanton moduli space Mz. The corresponding
metric tensor hab in the coordinate system z is defined by

‖dφinst‖2 = dza dzb hab(z), dφinst =
∂φinst

∂za
dza, (3.6)

where dφinst is an instanton fluctuation. Hence the metric on moduli space
is

hab(z) =
(
∂φinst

∂za

∣∣∣∣ ∂φinst

∂zb

)
= µ2

0

2πg

∫
r

∂φinst(r, z)
∂za

∂φinst(r, z)
∂zb

(3.7)
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and the corresponding measure is dµ(z)= dmz√det(h). The contribution
of the fluctuations orthogonal to the moduli space Mz is evaluated by the
saddle-point method. The final result for the contribution of the instanton
to the partition function is

Z
instanton←−−−−−−−−−

∫
Mz

dmza
√

det(hab(z))e−(1/g)S[φinst]
(

det′
[
S′′[φinst]/µ

2
0

])−1/2
,

(3.8)

where det′
[
S′′[φinst]

]
is the product of the non-zero eigenvalues of S′′[φinst].

The det(h) gives a power of the coupling constant g−m/2, where m is the
number of instanton zero-modes.

Similarly, let us now consider the expectation value for an observable
O[φ], for instance a product of fields O=φ(r1) · · ·φ(rn). The expectation
value is given by

〈O〉 = 1
Z

∫
D[φ]O[φ] e−(1/g)S[φ] (3.9)

The contribution of the (translationally invariant) classical vacuum to 〈O〉
is simply

〈O〉 classical vacuum←−−−−−−−−−−−− O[φ0]. (3.10)

The contribution to 〈O〉 of the instanton φinst, is obtained from

〈O〉≈
∫ D[ϕ]

(
O[φ0+ϕ]e−(1/g)S[φ0+ϕ]+O[φinst+ϕ]e−(1/g)S[φinst+ϕ]

)
∫ D[ϕ]

(
e−(1/g)S[φ0+ϕ]+ e−(1/g)S[φinst+ϕ]

) .

(3.11)

This expression is rather symbolic, since we have not written the integral
over the 0-mode of the instanton. Since S0<Sinst, we have S0/g�Sinst/g,
for g→0. Thus the leading term of (3.11) is given by (3.10), and the sub-
leading one is the contribution of the instanton, which (up to exponen-
tially small terms) reads

〈O〉 instanton←−−−−−−−−−
∫

Mz

dmza
√

det(h(z))
(
O[φinst[z]]−O[φ0]

)
e−(1/g)(S[φinst]−S[φ0])

×
(

Det′
[
S′′[φinst]/µ2

0

]
Det

[
S′′[φ0]/µ2

0

]
)−1/2

. (3.12)
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One can check that the µ0 dependence disappears (remember that the
moduli metric h depends on µ0) as long as there is no scale anomaly
coming from UV-divergences in the ratio of the two determinants of the
Hessians.

3.1.2. Large Orders of Perturbation Theory and Instantons

We now recall the basic argument which shows how the large orders
of perturbative series obtained by functional integrals are related to instan-
tons.

We assume that the observable Z(g) has a series expansion for small
positive coupling constant g and is in fact an analytic function of the cou-
pling constant g in a complex neighborhood of the origin away from the
negative real axis (i.e. for |g| small enough, |Arg(g)|<π ), but with a dis-
continuity along the negative real axis (|Arg(g)|=π ).

Its asymptotic series expansion is written as

Z(g) =
∞∑
k=0

Zk g
k. (3.13)

The large order (large k) asymptotic behavior of the coefficients Zk can
be estimated by semi-classical methods. Indeed, using a classical dispersion
relation, Zk can be written as a Mellin–Barnes integral transform of the
discontinuity of Z(g) along the cut (see Fig. 1)

Zk =
∫

C
dg

2iπ
g−k−1 Z(g)

= (−1)k
∫ +∞

0

dg

2iπ
g−k−1 [Z(−g+ iε)−Z(−g− iε)]

∣∣
ε→0+

= (−1)k
∫ +∞

0

dg

π
g−k−1 Im[Z(−g+ i0+)] (3.14)

with C a counterclockwise contour around the cut (Z is assumed to be real
for real g>0).

For large positive k this integral is dominated by the small g behav-
ior of the discontinuity, where semi-classical methods are expected to be
applicable. Indeed, it turns out that for small real negative g, the discon-
tinuity of Z(g) is dominated by the contribution of a complex instanton
(the real part of Z(g) is still given by the contribution of the real classical
solution). Therefore the small g behavior of Im[Z(g)] is of the form

Im[Z(−g+0+)] = C |g|β e−A|g|−α [1+o(|g|∗)] (3.15)
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Re(g)

Im(g)

0

Discontinuity

Integration path

Fig. 1. Contour integration in the complex coupling constant plane for the large orders
asymptotics.

with A a number (corresponding to the instanton action Sinst), α a (pos-
itive) constant given by power counting (in QM and standard local field
theories α = 1), C a number related to the determinant of the Hessian
operator of fluctuations around the instanton, and β a constant related to
the number m0 of zero-modes of the Hessian (in standard local field the-
ories β=1+m0/2). (See Appendix C for details on the polymer case.)

Given (3.15), the integral (3.14) can be calculated: Changing variables
from g to x :=g−α, we obtain

Zk = (−1)k
C

απ

∫ ∞
0

dx

x
x(k−β)/αe−Ax

= (−1)k
C

πα
A(β−k)/α �

(
k−β
α

)
, (3.16)

where � is Euler’s gamma function. Note that since (3.15) is valid for
small g only, this result is valid for large k. Using Stirling’s formula �(n)�
nne−n

√
2π/n, this amounts to

Zk= (−1)k
[
k

α

]k/α
[Ae](β−k)/α

[
k

α

]−β/α
C

πα

√
2πα
k

[
1+o(1/k∗)]

(3.17)



Instanton Calculus for the Self-Avoiding Manifold 895

and for α=1

Zk = (−1)k kk [Ae]β−k k−β
C

π

√
2π
k

[
1+o(1/k∗)] . (3.18)

It is an alternating asymptotic series with a Borel transform with non-zero
radius of convergence.

3.2. Instanton for the SAM

We are thus interested in the analytic structure of the partition func-
tion and the correlators of the SAM model for small negative coupling
constant b

b<0, b→0. (3.19)

In particular we are interested in the discontinuity along the negative real
axis. As shown in ref. 14 this can be done more easily by first rescaling
the fields and the size of the manifold with b in an adequate way.

3.2.1. Complex Rotation and Rescalings for Coupling Constant
and Fields

We consider a finite manifold M with internal size L defined as

Vol(M) = LD. (3.20)

We are interested in the model for small complex coupling constant b, and
more precisely in the discontinuity of the observables along the negative
real axis (b<0 real), where there is a cut.

We denote the argument of the coupling constant b by θ

θ =Arg (b) . (3.21)

To reach the cut at negative b from above or below amounts to taking the
limit

θ → ±π, |b| fixed. (3.22)
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We now rescale the internal coordinate of the membrane x and the
field r with the size L of the manifold and the modulus |b| of the coupling
constant

x → |b|1/(D−ε)LD/(D−ε)x, r → |b|(2−D)/(2(D−ε))L(2−D)D/(2(D−ε))r
(3.23)

so that we now deal with a rescaled manifold Ms with internal size and
internal volume

size(Ms)=|b|−1/(D−ε)L−ε/(D−ε), Vol(Ms)=|b|−D/(D−ε)L−εD/(D−ε).
(3.24)

Similarly we must rescale the auxiliary fields ρ and V as

ρ → |b|−1L−Dρ, V → |b|−D/(D−ε)L−D2/(D−ε)V . (3.25)

The purpose of these rescalings is that as the original coupling constant
b goes to 0, the effective theory for the auxiliary field V becomes simple.
Indeed it appears that both terms in the effective action S[V ] now scale in
the same way, as will be detailed now.

Coupling Constant. Let us denote by g the inverse of the volume of
the rescaled manifold

g = 1
Vol(Ms)

= |b|D/(D−ε) LDε/(D−ε) (3.26)

g is the (dimensionless) effective coupling constant of the theory, which is
real and positive and goes to 0 with |b| as long as ε <D.

Partition Function. The original partition function (for the manifold
M) becomes for the rescaled theory involving the manifold Ms

ZMs (b) =
∫

D[r]D[V ] exp

(
−
∫

Ms

(
1
2
(∇xr)2+V (r)

)
+ e−iθ

2g

∫
r
V (r)2

)

=
∫

D[V ] exp

(
−FMs [V ] + e−iθ

2g

∫
r
V (r)2

)
. (3.27)

Due to (3.26) both terms in the exponential scale as Vol(Ms)=1/g.



Instanton Calculus for the Self-Avoiding Manifold 897

Functional Measure. The functional measure over the rescaled field V
is now normalized so that

∫
D[V ] exp

(
e−iθ

2g

∫
r
V (r)2

)
= 1. (3.28)

Correlation Functions. The moments for the gyration radius of the
manifold become in the rescaled effective theory

R(k)gyr = b−2L−2D
(
Lg

1
D−ε

)((2−D)(2d+k)/2)−2D
∫

r1

∫
r2

|r1− r2|k V (r1)V (r2)

= e−2iθ
(
|b|LD

)k(2−D)/(2(D−ε)) ∫
r1

∫
r2

|r1− r2|k V (r1)V (r2)

Hence

R(k)gyr = e−2iθ Lk(2−D)/2 g k(2−D)/(2D)
∫

r1

∫
r2

|r1− r2|k V (r1)V (r2).

(3.29)

L is the internal extension of the original manifold M. This has the
correct dimension Lν0k with ν0 = (2−D)/2, since [R(k)]= [r]k and [r]=
[x](2−D)/2. Note that there is no additional phase for θ =±π .

3.2.2. Semi-classical Limit and the Effective Action S[V ]

Now come the crucial points:

1. As long as

ε <D

taking the semiclassical limit b→0 amounts to taking both the small cou-
pling limit g→0 in the rescaled theory and the thermodynamic limit (infi-
nite volume) for the rescaled manifold

b→0 ⇔ g→0 and Vol (Ms)→∞

for the rescaled manifold.
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2. In this thermodynamic limit the free energy FMs [V ] becomes pro-
portional to the volume of the manifold

FMs [V ] = Vol (Ms) E [V ] + · · · (3.30)

The free energy density E [V ] is defined as

E [V ] := lim
Vol(Ms )→∞

1
Vol(Ms)

FMs [V ] (3.31)

in the limit where the size of the manifold Ms is rescaled to ∞, and its
shape kept fixed. In this limit, the manifold Ms becomes locally a flat
D-dimensional Euclidean space R

D:

Ms → R
D. (3.32)

The free energy density E [V ] is independent of the size and of the shape of
the manifold and it is enough to compute it for the infinite flat manifold.

3. Moreover – and this is an important point – as long as we are
interested in the contribution of potentials V such that the manifold is
“trapped” in V (namely such that the free energy density E [V ]<0 is nega-
tive, i.e. such that there is a “bound state” in V ) the neglected terms +· · ·
are expected to be exponentially small in 1/g.

4. Finally, since

Vol(Ms) = 1
g

(3.33)

in the limit g→0 the functional integral takes the standard form

Z(b)
g→0=

∫
D[V ] exp

[
− 1
g

S[V ]
]
, (3.34)

where g is given by (3.26), the measure is given by (3.28) and the effective
action S[V ] for the field V is given by

S[V ] = E [V ]− e
−iθ

2

∫
V 2 (3.35)

E [V ] is the free energy density for an infinite flat manifold trapped in the
potential V , and is given by (3.31).
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3.2.3. The Functional Integral for Negative b and the Instanton

We are interested in the imaginary part of the partition function Z(b)
for b along the negative real axis, that is for

θ → ±π. (3.36)

In this limit the effective action S[V ] for the rescaled theory is real

S[V ] = E [V ] + 1
2

∫
V 2 (3.37)

and the measure over V is also real, since it is normalized such that
∫

D[V ] exp
[
− 1

2g

∫
V 2
]
= 1. (3.38)

It is now the standard measure for a real white noise with variance g:

〈V (r1)V (r2)〉 = g δ(r1− r2). (3.39)

Thus we can chose for integration measure over V the standard measure
over real V (r)

∫
D[V ]θ=±π =

∫ ∞
−∞

∏
r

dV (r)√
2πgδd(0)

. (3.40)

The instanton V inst is a non-trivial finite action extremum of the
action S[V ] and was found in ref. 14. The saddle-point equation is

0= δS[V ]
δV (r)

=V (r) + 〈ρ(r)〉V , (3.41)

where ρ(r) is the manifold density at point r

ρ(r) = 1
Vol(M)

∫
dDx δ(r− r(x)) (3.42)

and from now on we drop the index at Ms . 〈· · · 〉V refers to the expec-
tation value for the phantom manifold trapped in the external potential
V (r), that is with the action

∫
M
dDx

(
1
2
(∇xr)2+V (r)

)
. (3.43)
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The “classical vacuum” is V = 0 (free manifold). The instanton V inst is
a configuration of potential which is negative (potential well V (r) < 0),
spherically symmetric, with V→0 as |r|→∞. The solution of the instan-
ton equation and its properties have been studied in ref. 14.

3.3. Contribution of Fluctuations Around the Instanton

3.3.1. Instanton Zero Modes

The Hessian matrix (second derivative of the action) is

S ′′[V ]r1r2
= δ2E [V ]

δV (r1)δV (r2)
= δd(r1− r2) + 〈ρ(r1)ρ(r2)〉conn

V . (3.44)

The instanton has d translational zero modes, corresponding to the posi-
tion of the center of gravity r0 of the instanton. Thus the Hessian has d
zero modes

V zero
a = ∇aV inst, S ′′[V ] ·V zero

a = 0. (3.45)

According to the previous analysis, see Eq. (3.2), the metric on the inst-
anton moduli space M=R

d , ds2 = hab dra0drb0, is

hab = 1
2πg

∫
dd rV zero

a V zero
b = δab

1
2π g d

∫
dd r

(−→∇ V inst
)2

(3.46)

(using rotational invariance). Therefore the measure over the instanton
position r0 is

dd r0

[
1

2π g d

∫
dd r

(−→∇ V inst
)2
]d/2

.

Hence the contribution of the instanton to the partition function will be
(depending on whether θ =Arg(b)=±π )

Z(b)
instanton←−−−−−−−−−C±

∫
dd r0

[
1

2πd g

∫
r
( �∇V )2

]d/2
e−(1/g)S[V ] [det′

(S ′′[V ]
)]−(1/2)

(3.47)

with C± a simple factor (usually 1 or an integer for a real instanton) giv-
ing the weight of the instanton in the functional integral.

One might also expect zero-modes associated to the rotational invari-
ance of the theory. Such modes would indeed appear for a non-rota-
tionally invariant instanton solution. As it will turn out, the instanton is
rotationally invariant, such no such zero-modes exist.
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3.3.2. Unstable Eigenmode

However, as expected for a theory with the wrong sign of the cou-
pling and as shown in ref. 14, the instanton has one unstable eigenmode
V −(r). Thus the Hessian has one negative eigenvalue λ− and its determi-
nant is real but negative: det′(S′′)<0. Therefore we expect that the factor
C± will be complex.

In fact, as this is the case for the instanton in the local φ4 field the-
ory, the real part of C± is not unambiguously defined, but depends on
the resummation procedure used to define the contribution of the classical
saddle-point V = 0 in the functional integral (this is known as the Stokes
phenomenon). However, the instanton gives the dominant contribution to
the imaginary part of the functional integral, and one can show that

Im
[
Z(b)

] instanton←−−−−−− D±
∫
dd r0

[
1

2πd g

∫
r
( �∇V )2

]d/2
e−V S[V ]

∣∣det′
(S ′′[V ]

)∣∣−1/2

(3.48)

with the weight factor D±

D± = ∓ i
2
. (3.49)

This result can be obtained by a more precise analysis of the respective
position of the integration path and of the instanton solution in the space
of complex potentials V (r) ∈C as θ is rotated from 0 to ±π , using the
steepest descent method. This is shown in Appendix B.

3.4. Final Result for the Instanton Contribution

The final result for the imaginary part of the partition function at
negative coupling is

ImZ(b)=∓1
2

∫
dd r0

[
1

2πd g

∫
r
( �∇V )2

]d/2
e−(1/g)S[V ]∣∣det′

(S ′′[V ]
)∣∣−1/2

.

(3.50)

depending on whether Arg(b)=±π . The infinite bulk volume factor
∫
dd r0

disappears (as it should) in the normalized partition function Z=Z/Z0

ImZ(b)=∓1
2
g−d/D

[
e−ζ̄ ′(0)

d

∫
r
( �∇V )2

]d/2
e−(1/g)S[V ] ∣∣det′

(S ′′[V ]
)∣∣−1/2

,

(3.51)
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where ζ̃ ′(0) was defined in (2.9). One must remember that

g = (|b|L−ε)D/(D−ε) (3.52)

and that r is in fact the dimensionless rescaled field r̃= r
(|b|LD)−2(2−D)/(2(D−ε))

= r
(
g LD

)−(2−D)/(2D)
defined in (3.23). We thus obtain for the discontinuity of

the partition function Z(b) for a marked manifold with a fixed point (as defined
by Eq.(2.13))

Im Z(b) = ∓ 1
2
L−d(2−D)/2 g−d/D

[
1

2πd

∫
r
( �∇V )2

]d/2

×e−(1/g)S[V ] ∣∣det′
(S ′′[V ]

)∣∣−1/2
. (3.53)

For the N -point correlators R(N)(r1, . . . , rN ;b) defined by (2.21) the result
is more complicated since the ri ’s are rescaled in the process b→ g.
However he result takes a simple form for global quantities such as the
moments of the radius of gyration of the manifold R(k)

gyr=〈R(k)gyr〉 defined
by (2.28)

Im R(k)
gyr = ∓

1
2
L(k−D)(2−D)/2 g−d/D+k(2−D)/(2D) e−(1/g)S[V ]

×
[

1
2πd

∫
r
( �∇V )2

]d/2 ∣∣det′
(S ′′[V ]

) ∣∣−1/2

×
[∫

r1

∫
r2

|r1− r2|k V (r1)V (r2)

]
. (3.54)

3.5. Large Orders

In the rest of this article, we shall denote for simplicity

S=S[V inst], D = det′
(
S[V inst]

)
,

L = log(D), W =
[

1
2πd

∫
r
( �∇V inst)2

]d/2
. (3.55)

If no UV divergences were present at ε=0, the final result at ε=0 would
be

Im Z(b) = ∓ 1
2
L−2D |b|4/(2−D) e−(1/|b|)SW |D|−1/2. (3.56)
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Using the the arguments of Section 3.1, in particular the dispersion rela-
tion (3.14) and (3.18), the large-order asymptotics for the perturbative
expansion of Z(b)

Z(b) =
∞∑
k=0

Zk bk (3.57)

would be (ε=0)

Zk � (−1)k �
(
k− 4

2−D
)

1
2π

L−2D W |D|−1/2 S(4/(2−D))−k (3.58)

or equivalently (ε=0)

Zk � (−1)k �
(
k−2− d

2

)
1

2π
L−4d/(4+d)W |D|−1/2 S2+d/2−k,

(3.59)

indicating that the Borel transform of Z(b) has a finite radius of conver-
gence S. Of course the instanton normalization W |D|−(1/2) depends also
on d.

4. UV DIVERGENCES AND RENORMALIZATION

We now discuss the UV divergences in the determinant factor for
the instanton, and how they are renormalized. We remind the reader that
at one loop in perturbation theory, for 0< ε �D there is a divergence
associated to the operator I (super-renormalizable case); for ε = 0 two
divergences associated to the operators (∇r)2 and δd

(
r(x)− r(y)

)
(renorm-

alizable case). For ε < 0 the theory is not renormalizable. The model is
always considered for D<2 and ε is given by

ε=2D− d
2
(2−D). (4.1)



904 David and Wiese

4.1. Series Representation of the Determinant for the Fluctuations

The Hessian matrix S ′′ is given by (3.44). We rewrite it as

S ′′r1r2
= 1lr1r2 − Or1r2 , 1lr1r2 = δd(r1− r2) (4.2)

Or1r2 = lim
M→RD

1
Vol(M)

∫
x1

∫
x2

〈
δd
(
r1− r(x1)

)
δd
(
r2− r(x2)

)〉conn
V

, (4.3)

where V is the instanton potential V inst. O can be rewritten, using transla-
tional invariance x→x+x0 when M→R

D, and the saddle point equation
for the instanton potential V

Or1r2 =
∫

RD
dDx

〈
δd
(
r1− r(0)

)
δd
(
r2− r(x)

)〉conn
V

=
∫

RD
dDx

[〈
δd
(
r1− r(0)

)
δd
(
r2− r(x)

)〉
V
− 〈δd(r1− r(0)

)〉
V

〈
δd
(
r2− r(x)

)〉
V

]

=
∫

RD
dDx

[〈
δd
(
r1− r(0)

)
δd
(
r2− r(x)

)〉
V
−V (r1)V (r2)

]
. (4.4)

Let us already note that such an integral is IR finite, since from clustering
we expect that at large distances

〈
δd
(
r1− r(x)

)
δd
(
r2− r(y)

)〉conn
V
=O(exp(−|x−y|m)) when |x−y|→∞,

(4.5)

where m is the “mass gap” of the excitations for the manifold trapped in
the instanton potential V .

We have seen that the operator S ′′ has d zero modes V zero
a ∝∇aV inst,

which, as discussed in Section (3.1), are eigenvectors of O with eigenvalue
λ0=1, and one unstable eigenmode V −, which is an eigenvector of O with
eigenvalue λ− larger than 1. For convenience, we normalize its L2 norm to
1. Let us denote P

0 the projector on the zero-modes, and P
− the projector

on the unstable mode

P
0

r1r2 =
∑
a

V zero
a (r1)V

zero
a (r2)

=
−→∇ V ⊗−→∇ V
∫

r

(−→∇ V )2
, P

−
r1r2 = V−(r1)V−(r2) (4.6)
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and P the sum

P = P
0 + P

−. (4.7)

Apart from these eigenvalues, it is easy to see that all other eigenvalues of
O are smaller than 1, but positive. Indeed, from Eq. (4.3), O is a positive
operator, since for any f (r)

f ·O ·f = 1
Vol(M)

〈[∫
x
f
(
r(x)

)]2
〉conn

V

> 0. (4.8)

To compute the determinant of the fluctuations we treat separately the
negative and zero modes from the rest. We write the logarithm of det′[S ′′]

L = log
(
det′

[S ′′]) = log(1−λ−) + tr [(I−P) log(I−O)] . (4.9)

The first term is the contribution of the unstable mode (it has an imag-
inary part), the second term is the contribution of all other modes with
0<λ< 1. In this last term we can expand the log and obtain a conver-
gent series

L = log(1−λ−) −
∞∑
k=1

1
k
Lk, Lk = tr

[
(I−P)Ok

] = tr
[
O
k
]
−d−λk−,

(4.10)

provided that each term is UV finite (that is the trace is well defined).
We now show that only the first two terms k= 1 and k= 2 are UV

divergent, and require renormalization.

4.2. UV Divergences

4.2.1. UV Divergences in r and in x Space

UV divergences in the determinant are expected to come from the
high momentum eigenmodes of S ′′. If we consider a potential V =V inst+
V>, with V> a high momentum fluctuation, we expect that a phantom
manifold trapped in V will feel only weakly the small wavelength varia-
tions of V , so its free energy E [V ] will depend only weakly on V>. The
other term

∫
dd rV 2(r) will be dominant in the variation of the effective

action S[V ]. As a consequence, high momentum eigenmodes of S ′′ will
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have eigenvalues close to 1, that is will be eigenmodes of O with very
small eigenvalues λ→0.

Therefore UV divergences will come from the contribution of the
numerous eigenvalues of O close to 0, that is from the divergence of the
spectral density ρO(λ) of the operator O at λ = 0. We shall show that
ρO(λ) diverges as λε/D−3, and that

tr[O] is UV divergent if ε�D, tr[O2] UV divergent if ε=0

(4.11)

and that higher powers tr[Ok] (k�3) are UV convergent.
The tr[·] amounts in our representation to an integral over r in bulk

space R
d . UV divergences will occur as short-distance singularities in r

space. We shall also see that to analyze the UV divergences it is more
convenient to come back to the equivalent representation of O in x space
(internal manifold).

4.2.2. tr[O]

This term is given by

tr[O] =
∫
dd r Orr (4.12)

and is UV divergent for ε�D because we expect that

Orr′ � |r− r′|−d+ 2(ε−D)
2−D as r− r′ → 0. (4.13)

The crucial point (to be proven later) is that the short-distance behavior of
Orr′ for a manifold in the background potential V (r) does not depend on
the details of the potential V , and is given (at leading order) by that of a
free manifold in a constant potential (V (r)=V0). We can compute explic-
itly Orr′ in that case and find Eq. (4.13).

Using (4.4) we can rewrite tr[O] as an x-integral over the manifold
M, and integrate explicitly over r, with the result

tr[O] = ∫ dd r
∫
MdDx

[〈
δd
(
r− r(x0)

)
δd
(
r− r(x)

)〉
V
−V (r)2

]

= ∫
MdDx

[〈
δd
(
r(x)− r(x0)

)〉
V
− ∫r V (r)

2
]
.

(4.14)
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It contains the integral of the correlation function

〈
δd
(
r(x)− r(x0)

)〉
V

(4.15)

for a phantom manifold (i.e. without self-interaction) trapped in the inst-
anton potential V (r). The choice of the “origin” x0 is arbitrary, since
(4.15) depends only on x−x0 (translational invariance in M=R

D).
This integral is IR convergent, as can be seen from Eq. (4.5). UV

divergences occur if the x-integral is divergent at short distances on the
manifold, i.e. for |x−x0|→0. The correlation function (4.15) is very sim-
ilar to the two-point correlation function which appears at first order in
the perturbative expansion of the self-avoiding manifold model, and more
precisely for the normalized partition function Z(b)

Z(b) = 1− b
2

∫
x,y

〈
δd
(
r(x)− r(y)

)〉
0

+b
2

8

∫
x,y,x′,y′

〈
δd
(
r(x)− r(y)

)
δd
(
r(x′)− r(y′)

)〉
0+O(b3). (4.16)

One therefore expects that the renormalization group counter-terms at
leading order, which subtract the leading order UV-divergences in (4.16)
are also sufficient to render (4.14) finite. That this is indeed the case will
be shown below.

4.2.3. tr[O2]

Similarly, starting from (4.4), we can rewrite tr[O2] in term of two
“replicas” of the manifold, labeled M1 and M2, fluctuating independently
in the same instanton potential V (without interactions). If we denote
r1(x) and r2(x) the r-fields for the two replicas, we have

tr[O2] =
∫
dd r

∫
dd r′ Orr′Or′r

=
∫
dd r

∫
dd r′

∫
M1

dDx
∫

M2

dDy

×
[〈
δd(r− r1(x0))δ

d(r′ − r1(x))
〉
V
−V (r)V (r′)

]

×[〈δd(r′ − r2(y0))δ
d(r− r2(y))

〉
V
−V (r′)V (r)]
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=
∫

M1

dDx
∫

M2

dDy

{〈
δd
(
r1(x0)− r2(y)

)
δd
(
r1(x)− r2(y0)

)〉
V

− 〈V (r1(x0))V (r1(x))
〉
V
− 〈V (r2(y0))V (r2(y))

〉
V
+
[∫

r
V (r)2

]2
}
.

(4.17)

The choice of the origins x0 and y0 on the two manifolds M1 and M2 is
arbitrary.

This integral is IR finite by the same arguments as those for tr[O].
UV divergences are only present in the first correlation function

〈
δd
(
r1(x0)− r2(y)

)
δd
(
r1(x)− r2(y0)

)〉
V

(4.18)

very similar to the correlation function which appears at second order in
Z(b), see Eq. (4.16). We shall see that UV divergences occur when

x→x0, y→y0 simultaneously (4.19)

while the other terms
〈
V
(
r(x)

)
V
(
r(x0)

)〉
V

are not singular.

4.2.4. tr[Ok ], k �3

We can similarly write the higher order terms. At order k we need k

copies Mα of the manifold M, fluctuating in the same instanton potential
V (r). The most UV singular term in the x-representation of tr[Ok] is

∫
⊗Mα

dD x
〈 k∏
α=1

δd
(
rα−1(oα−1)− rα(xα

)〉
V

(4.20)

(where we identify α=0 with α= k), that we can represent graphically as
a “necklace of k manifolds”. The reference points oα on each Mα can be
chosen arbitrarily, for instance fixed to the origin. UV divergences occur
when all pairs of points (oα,xα) collapse simultaneously on each Mα.
These terms are in fact UV finite for ε=0 (see Fig. 2).
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Fig. 2. Diagrammatic representation of the UV divergent correlation functions at order k=1
(one manifold), k=2 (2 manifolds), and k=3 (3 manifolds).

4.3. MOPE for Manifold(s) in a Background Potential

In refs. 12 and 13 the UV divergences of the self-avoiding manifold
model have been analyzed using a Multilocal Operator Product Expansion
(MOPE). This formalism was developed to study the correlation function
of multilocal operators of the form (2.19),

〈∏
i

δd
(
r(xi )− r(yi )

)〉
0, (4.21)

where the expectation values
〈· · · 〉0 are calculated for a free manifold

model (V =0). We show here how this formalism can be adapted to deal
with expectation values

〈· · · 〉
V

for manifolds trapped in a non-zero back-
ground potential V (r).

4.3.1. Normal Product Decomposition of the Potential V

In order to compute easily expectation values of operators in the
background potential V , we shall use the normal product formalism
already developed in ref. 14.

For simplicity we consider a potential V (r) spherically symmetric (as
the instanton potential) with its minimum at r=0, of the form

V (r) =
∞∑
n=0

vn

2nn!

(
r2
)n
, v1 = m2

0 > 0 m0 = “bare mass”. (4.22)

We may (at least formally), compute expectation values of operators〈· · · 〉
V

in perturbation theory, starting from the Gaussian potential V (r)=
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(m2
0/2)r

2 and expanding in powers of the non-linear couplings {vk, k�2}.
This perturbation theory involves Feynman diagrams with massive prop-
agators 1/(p2+m2

0). It is more convenient to resum all tadpole diagrams
and to deal with an expansion of the potential V (r) in terms of normal
products :

(
r2
)n

:
m

. The normal product :[ ]:µ with the subtraction mass
scale µ is defined by the global formula (expanded in k, it generates all
operators which are local powers of r)

:eikr:µ = ek2Gµ/2 eikr, (4.23)

where Gµ is the tadpole amplitude evaluated with the propagator of mass
µ,

Gµ =
∫

dDp
(2π)D

1
p2+µ2

= � ((2−D)/2)
(4π)D/2

µD−2. (4.24)

Thus we rewrite the potential V (r) given in (4.22) as

V (r) =
∞∑
n=0

gn

2nn!
:(r2)

n
:m . (4.25)

The mass scale m used to define the normal product :· · ·:m is defined self-
consistently from V so that it coincides with the “renormalized mass” in
(4.25)

g1 = m2. (4.26)

This gives a self-consistent equation for m in terms of V (r) (or its Fourier
transform V̂ (k))

m2 = − 1
d

∫
ddk
(2π)d

k2 V̂ (k) e−(k
2/2)Gm

= − 1
Gm

(2πGm)−d/2
∫
dd rV (r)

(
1− r2

d Gm

)
e−r2/(2Gm). (4.27)

All other couplings g0, g2, g3, etc. in (4.25) are then uniquely defined from
the potential V . We rewrite V as

V (r)=g0+ m
2

2
:r2:+U(r), U(r) = g2

222!
:(r2)2:+ g3

233!
:(r2)3:+· · · (4.28)
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and we shall treat the non-linear terms U(r) as perturbation. The expec-
tation value of a (multilocal) operator O(x1, . . . ,xK) can be expanded as

〈O(x1, . . . ,xK)〉V =
∞∑
N=0

(−1)N

N !

×
∫ N∏

i=1

dDzi〈O(x1, . . . ,xK)U(z1) · · ·U(zN)〉connected
m , (4.29)

where 〈· · · 〉 is the expectation value in the massive free theory (U =0).
In this new perturbative expansion there are no tadpole diagrams.

This makes the diagramatics much simpler. In addition many simplifica-
tions occur in the limit d→∞, as already noted in ref. 14.

4.3.2. MOPE in a Harmonic Potential

First we consider the case of a potential quadratic in r, which is espe-
cially simple. The potential reads

V (r)=v0+
m2

0

2
r2=g0+ m

2

2
:r2:m, m0=m, v0=g0−d m

2

2
Gm.

(4.30)

The field r is still free but massive with mass m and the propagator is

Gm(x−y) =
∫

dDp
(2π)D

eip(x−y)

p2+m2

= 1
2π

[
m

2π |x−y|
]D−2

2

KD−2
2
(m|x−y|), (4.31)

where Kν is the modified Bessel Function.
It is simple to study the short-distance limit of products of local and

multilocal operators in this massive Gaussian theory, using exactly the
same ideas and techniques as for the free massless case (m=0) developed
in ref. 13.

OPE for the Massive Propagator Gm. We express the short-distance
expansion of multilocal operators in terms of the expansion for the
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massive propagator.3

Gm(x−y) = c0(D)m
D−2 − d0(D) |x−y|2−D

+c1(D)m
D |x−y|2 − d1(D)m

2 |x−y|4−D + · · · . (4.33)

The coefficients c0, c1, d0, d1, are finite as long as D<2 and are given by

c0(D)=
�
(

2−D
2

)

(4π)D/2
, c1(D)= c0(D)

2D
,

d0(D)=−
�
(
D−2

2

)

4 πD/2
, d1(D)= d0(D)

2(4−D). (4.34)

Note that

d0(D) = 1
(2−D)SD with SD= 2π(D/2)

�(D/2)
= volume of the unit sphere in R

D. (4.35)

This expansion follows itself from the OPE for the product of two r fields
in the massive theory, which reads

ra(x)rb(y) = −|x−y|2−D d(|x−y|2m2) δab 1l+
∑
p1,p2

xp1

p1!
yp2

p2!
:∇p1 ra∇p2 rb:0,

(4.36)

3The expansion is easily obtained from the proper-time integral representation of Gm(x), by
expanding the integrand in m2 to get the analytic terms in m2, and in x2 to get the analytic
terms in x2:

Gm(x)=
∫

dDp
(2π)D

∫ ∞
0

ds eipxe−(p
2+m2)s= 1

(4π)D/2

∫ ∞
0

ds e−m
2s s−D/2e−x

2/(4s) (4.32a)

= �((−2+D)/2)
4πD/2

|x|2−D− �((−4+D)/2)m2

16πD/2
|x|4−D+O(m4)

+non-analytic terms in m2 (4.32b)

= mD−2

(4π)D/2
� (1− (D/2))− 1

4
mD

(4π)D/2
� (−D/2) |x|2+O(x4)

+non-analytic terms in |x|2 (4.32c)
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where the coefficient d(|x−y|2m2) has an (asymptotic) series expansion in
|x−y|2m2

d(|x−y|2m2)=d0+d1|x−y|2m2+d2|x−y|4m4+· · ·

and where the normal products :· · ·:0 with respect to the zero mass means
that the operators ∇•r∇•r are defined through dimensional regularization
(see below).

MOPE for δd(r1− r′1) and tr[O]. We first consider the short-distance
expansion for the operator δd(r(x)− r(y)), which enters in tr[O]. Using the
definition (4.23) for the normal product we can write it as

δd(r(x)− r(y)) =
∫

ddk
(2π)d

eik(r(x)−r(y))

=
∫

ddk
(2π)d

e
−k2
(
Gm(0)−Gm(x−y)

)
:eik(r(x)−r(y)):m .

(4.37)

The last bilocal operator is regular at short distance (when x→ y) and
can be expanded in x−y as

:eik(r(x)−r(y)):m = 1l(z) − 1
2

kakb (xµ−yµ)(xν −yν) :∇µra∇νrb(z) :m + · · ·,
(4.38)

where z= (x+y)/2 and the subdominant terms are of order O(|x− y|4)
with higher derivative operators. We insert (4.38) into (4.37) and integrate
over k to obtain

δd(r(x)− r(y)) = (4π)−(d/2) [Gm(0)−Gm(x−y)]−(d/2)

×
[

1l(z)− δab
4

(xµ−yµ)(xν −yν)
[Gm(0)−Gm(x−y)]

:∇µra∇νrb(z):m + · · ·
]
.

(4.39)

We now use the short-distance expansion (4.33) of the massive propagator
Gm(x−y) and insert it into (4.39) to obtain

δd(r(x−r(y))) = (4π d0)
−(d/2)|x−y|ε−2D

×
[(

1+ d
2
c1

d0
mD|x−y|D− d

2
d1

d0
m2|x−y|2+· · ·

)
1l(z)

− δab

4
(xµ−yµ)(xν −yν)
d0 |x−y|2−D :∇µra∇νrb(z):m + · · ·

]
.

(4.40)
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In (4.40) we can regroup the two terms of order |x−y|ε−D as

(4π d0)
−d/2|x−y|ε−D

[
d

2
c1

d0
mD1l(z)− 1

4d0

(xµ−yµ)(xν −yν)
|x−y|2 :∇µr∇νr(z):m

]
.

(4.41)

Note that the OPE (4.40) is a relation between operators, and is valid for
any choice of the mass m used to define the normal product. Thus the
term (4.41) can be rewritten as the normal ordered operator :∇r∇r:0 with
subtraction mass µ=0

(4π d0)
−d/2 |x−y|ε−D

[
− 1

4d0

(xµ−yµ)(xν −yν)
|x−y|2 :∇µr∇νr(z):0

]
.

(4.42)

Indeed we have the relation

:∇µra∇bν r:m = :∇µra∇bν r:0 − 2 δab δµν mD c1(D)1l. (4.43)

Since this relation will be crucial to prove renormalizability, let us show it
explicitly. From the definition of the normal product we have

:∇µra∇bν r:m = ∇µra∇νrb − 〈∇µra∇νrb〉m 1l (4.44)

for any m, hence

:∇µra∇νrb:m− :∇µra∇νrb:0 = −
(〈∇µra∇νrb〉m−〈∇µra∇νrb〉0

)
1l.

(4.45)

The right hand side is easily calculated using the OPE (4.33) for the prop-
agator Gm itself, since

〈ra(x)rb(y)〉m = δab Gm(x−y). (4.46)

This yields

〈∇µra∇νrb
〉
m
− 〈∇µra∇νrb

〉
0 = δab

∂

∂xµ
∂

∂yν
[Gm(x−y)−G0(x−y)]

∣∣∣∣
x=y

= −2 δab δµν mD c1(D). (4.47)
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Note that the massless propagator G0(x− y) is IR divergent but the IR
divergent term is constant (independent of x−y) and disappears in (4.47)
because of the x derivatives. Hence we obtain (4.43).

Thus we have obtained the first three terms of the MOPE for the δ
operator in the U =0 background

δd(r(x)− r(y)) = (4πd0(D))
−(d/2)|x−y|ε−2D

×
[

1− d

4(4−D)m
2|x−y|2+· · ·

]
1l(z)

−π (4πd0(D))
−(1+d/2)|x−y|ε−D−2

×(xµ−yµ)(xν −yν) :∇µr∇νr:0+· · · .

(4.48)

The same argument can be used to construct the higher orders of
the MOPE. They involve higher dimensional operators of the form Op=
:∇p1 r∇p2 r∇p3 r · · ·:0 (since the operator δd(r(x)− r(y)) is invariant by trans-
lation r→ r+ r0 the Op must contain only derivatives ∇r, that is pj > 0,
and by parity in r the Op must be even in r). They give subdominant pow-
ers of |x−y| of the form m2k|x−y|ε−2D+2k+∑j (pj−1+D/2).

Finally let us stress that the two first terms of the MOPE (for D<2)
are the terms of order |x− y|ε−2D and |x− y|ε−D and that they are the
same as for the MOPE for the free membrane, that is for m=0. This will
imply that the (one-loop) UV divergences (single poles at ε=D and ε=0)
due to this MOPE in the massive theory (self-avoiding manifold in a har-
monic confining external potential) are canceled by the same counterterms
as for the free theory (self-avoiding manifold with no confining potential).
These counterterms are proportional to the operators 1l and (∇r)2.

MOPE for δd(r1− r2)δ
d(r1− r2) and tr[O2]. The reader familiar with

the techniques of ref. 13 will see that the same arguments can be used to
construct the MOPE for general products of local and multilocal opera-
tors in the m �=0, U =0 background.

Let us concentrate on the MOPE for two δ operators, which enters in
tr[O2]. We are interested in the short-distance expansion (x→ x0, y→ y0)
for the product of two bilocal operators

δd(r1(x0)− r2(y))δ
d(r1(x)− r2(y0)), (4.49)

where r1 and r2 belong to two independent manifolds M1 and M2. As
above, we write the δ’s as a Fourier transform of an exponential and
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reexpress it in terms of normal products

δd(r1(x0)− r2(y))δd(r1(x)− r2(y0))=
∫
ddk1d

dk2

(2π)2d
ei(k1[r1(x0)−r2(y)]+k2[r1(x)−r2(y0)])

=
∫
ddk1d

dk2

(2π)2d
:ei(k1[r1(x0)−r2(y)]+k2[r1(x)−r2(y0)]): e−k1k2[Gm(x0−x)+Gm(y−y0)]−(k2

1+k2
2)Gm(0)

Note that there are no cross-terms, as those proportional to G(x−y), since
x and y belong to different manifolds, thus r1(x) and r2(y) are uncorrelat-
ed. We now keep the dominant term for the OPE when x→x0 and y→y0

:ei(k1[r1(x0)−r2(y0)]+k2[r1(x)−r2(y0)]): = :ei((k1+k2)[r1(x0)−r2(y0)]): + · · ·

(the neglected terms contain subdominant ∇pr’s), rewrite this term as

:ei((k1+k2)[r1(x0)−r2(y0)]): = ei((k1+k2)[r1(x0)−r2(y0)]) e(k1+k2)
2Gm(0)

and integrate over k1 and k2 to obtain

∫
ddk1 d

dk2

(2π)2d
:ei(k1+k2)[r1(x0)−r2(y0): ek1k2[2Gm(0)−Gm(x0−x)−Gm(y−y0)]

=
∫
ddk ddk′

(2π)2d
eik[r1(x0)−r2(y0)]e(k

2/4−k′2)[2Gm(0)−Gm(x0−x)−Gm(y−y0)]

(4.50)

with k=k1+k2 and k′ = (k1−k2)/2. The leading term is obtained by drop-
ping the factor of k2/4 in the second exponential (the neglected terms give
subdominant δ(n)(r1− r2) terms). This allows to do the integrations explic-
itly

δd(r1(x0)− r2(y))δd(r1(x)− r2(y0))

� (4π)−d/2 [2Gm(0)−Gm(x−x0)−Gm(y−y0)]−d/2

× δd (r1(x0)− r2(y0)) .

(4.51)

From the short-distance expansion (4.33) for Gm(0) − Gm(x) the most
singular term when both x→x0 and y→y0 is

δd(r1(x0)− r2(y))δ
d(r1(x)− r2(y0))

=
[|x−x0|2−D+|y−y0|2−D

]−d/2
(4πd0(D))

d/2
δd(r1(x0)− r2(y0)) + · · · . (4.52)
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Thus we have obtained the leading term for the MOPE in the harmonic
background U =0, m �=0.

This leading coefficient given by (4.52) is the same as for the free
membrane (V = 0). The same calculation can be done for the MOPE of
two δ’s on the same membrane, and we get (at leading order) a MOPE
with the same coefficient

δd(r(x0)− r(y))δd(r(x)− r(y0))

=
[|x−x0|2−D+|y−y0|2−D

]−d/2
(4πd0(D))

d/2
δd(r(x0)− r(y0)) + · · · . (4.53)

This implies in particular that the (one-loop) UV divergence (single pole
at ε = 0) due to this MOPE in the massive theory (self-avoiding mani-
fold in a harmonic confining external potential) is canceled by the same
counterterm as for the free theory (self-avoiding manifold with no con-
fining potential). This counterterm is proportional to the bilocal operator
δ(r− r′).

MOPE for Higher Order Terms and tr[Ok]. The same analysis can
be performed for the product of three δ’s, in particular δd [r1(x0) −
r2(y)]δd [r2(y0)− r3(z)]δd [r3(z0)− r1(x)], which has to be considered for the
quantity tr[O3]. It shows that the leading singularity when x→x0, y→y0,
z→ z0 is given by the same MOPE as in the free theory, with the same
leading coefficient. No additional UV divergences arise. The same result
holds for higher order products of δ’s.

4.3.3. MOPE in the Anharmonic Potential

We now generalize this analysis to the SAM model in an anharmonic
confining potential.

General Discussion. The perturbative expansion involves now interac-
tion vertices given by the expansion of the local potential U(r). For D<
2 and as long as no bilocal δ(r− r′) operators are inserted this perturba-
tion theory is UV finite. The only UV divergences that occur when D→2
are given by the tadpole amplitudes Gm, but they are subtracted by the
normal product prescription :· · ·:m. Thus as long as the normal ordered
potential V is finite (i.e. its coefficients g1=m2, g2, g3, etc. are UV finite)
the “vacuum diagrams” are UV finite. Since we deal with a massive theory
no IR divergences are expected.
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z

x y
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x y

Fig. 3. Two contributions to tr(O) at first order in perturbation theory, associated with the
insertion of one :r(z)4:.

Now we have to consider insertions of the bilocal δd(r− r′) operators,
and thus to look for instance at

∫
dDy dDy

N∏
i=1

dDzi 〈δd(r(x)− r(y))U(z1) · · ·U(zN)〉connected
m . (4.54)

The UV divergences which may occur when |x− y|→ 0, while the other
distances remain finite, have already been analyzed with the MOPE in the
harmonic case. We have seen there that when some zi come close, no UV
divergences occur. The only dangerous case is when some z’s, x and y
come close at the same rate. Thus we must study the short-distance expan-
sion of a product of local operators (the U ’s) and of multilocal opera-
tors (the δ’s), in the massive theory. This short-distance expansion can be
studied by the same MOPE techniques as above. Let us first give a simple
explicit example.

Example. To be explicit, we first regard as an example the simple case
of the contribution to tr(O) given by one of the terms of (4.54) with only
one U(z), and more precisely one quartic term :r(z)4:. The arguments for
higher powers in r or higher orders in perturbation theory will be identi-
cal. Following (4.14) the crucial term to calculate is

∫
M
dDx

∫
M
dDy

〈
δd
(
r(x)− r(y)

)
:r(z)4:

〉
m
. (4.55)

Applying Wick’s theorem we can decompose it in terms of multilocal dia-
grams such as those depicted on Fig. 3. More explicitly this term can be
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written as

∫
M
dDx

∫
M
dDy

∫
dDk
(2π)d

〈
eik[r(x)−r(y)] :r(z)4:

〉
m

=
∫

M
dDx

∫
M
dDy

∫
dDk
(2π)d

〈
eik[r(x)−r(y)]

〉
m

(
〈k [r(x)− r(y)] r(z)〉2m

)2

∼ 1
Vol(M)

∫
M
dDx

∫
M
dDy

∫
M
dDz

∫ 〈
δd(r(x)− r(y))

〉

× [Gm(x−z)−Gm(y−z)]4

[Gm(0)−Gm(x−y)]2
,

=:
∫

x,y∈M
F(x,y)

∫
z∈M

[Gm(x−z)−Gm(y−z)]4

[Gm(0)−Gm(x−y)]2
. (4.56)

We now derive an important bound. First of all, due to the triangular
inequality

(r(y)− r(z))2 � (r(x)− r(y))2+ (r(x)− r(z))2 (4.57)

Gm(0)−Gm(y−z)�2Gm(0)−Gm(x−y)−Gm(x−z) (4.58)

leading to

Gm(x−z)−Gm(y−z)�Gm(0)−Gm(x−y). (4.59)

An analog relation is valid with x and y exchanged, resulting in a bound
for the absolute value. The right hand side is thus also positive and we get
the bound for the ratio

∣∣∣∣Gm(x−z)−Gm(y−z)
Gm(0)−Gm(x−y)

∣∣∣∣�1. (4.60)
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We now want to show that the counter-terms remains the same. Using
(4.60), we can write the bound

∣∣∣∣
∫

M
dDx

∫
M

dDy
∫

dDk
(2π)d

〈
eik[r(x)−r(y)] :r(z)4:

〉
m

∣∣∣∣
�
∣∣∣∣
∫

x,y∈M
F(x,y) [Gm(0)−Gm(x−y)]2

∣∣∣∣
×
∫

z∈M

[
Gm(x−z)−Gm(y−z)
Gm(0)−Gm(x−y)

]4

�
∣∣∣∣
∫

x,y∈M
F(x,y) [Gm(0)−Gm(x−y)]2

∣∣∣∣×Vol(M). (4.61)

The latter bound is already enough to show that no additional counter-
terms proportional to the elastic energy are necessary. It would also be
sufficient for the perturbation expansion of tr(O2). However, we can do
better and show that there is no divergence at all. To do so, we now esti-
mate the integral over z. Two domains of integration have to be distin-
guished:

S :

∣∣∣∣z− x+y
2

∣∣∣∣�α|x−y|

L :

∣∣∣∣z− x+y
2

∣∣∣∣>α|x−y|

α is chosen large (to be specified below), but finite. The integrals over z
are bounded by

∫
z∈M

[
Gm(x−z)−Gm(y−z)
Gm(0)−Gm(x−y)

]4

�
∫

z∈S

[
Gm(x−z)−Gm(y−z)
Gm(0)−Gm(x−y)

]4

+
∫

z∈L

[
Gm(x−z)−Gm(y−z)
Gm(0)−Gm(x−y)

]4

.

(4.62)

Using (4.60), the first term is bounded by

∫
z∈S

[
Gm(x−z)−Gm(y−z)
Gm(0)−Gm(x−y)

]4

�
∫

z∈S
1� (α|x−y|)D . (4.63)
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In domain L, analyticity of the propagator allows the bound

∣∣∣∣Gm(x−z)−Gm(y−z)
Gm(0)−Gm(x−y)

∣∣∣∣�a1

∣∣∣∣ (x−y)∇Gm(x−z)
Gm(0)−Gm(x−y)

∣∣∣∣�a2 (m|x−y|)D−1 .

(4.64)

We do not give a rigorous proof here, but it is clear that α should be
sufficiently larger than 1 (say 10), which allows to establish a value for a1,
itself depending on α, but saturating for large α. The constant a2 is cho-
sen in order to bound ∇Gm(x−z) by its maximal value on M, which has
to scale with m by power-counting in the way given above.

We are now in a position, to put everything together.
The integration over the distance s :=x−y (which contains the possi-

ble UV-divergence) can now be written for small s as follows (we drop all
constants for simplicity of notations)

∫
ds
s

sD×s−
2−D

2 d ×s2(2−D)×
{

sD

s4(D−1)

for S
for L . (4.65)

The factor of sD comes from the integration measure; s−
2−D

2 d is the
leading UV-divergence in F(x,y); the next factor s2(2−D) is the short-dis-
tance scaling of [Gm(0)−Gm(x−y)]2, and the remaining factors have been
established in (4.63) and (4.64), respectively. Using ε=2D− (((2−D)/2)d),
this can be rewritten as

∫
ds
s

sε×
{

s2(2−D)

sD
for S,
for L. (4.66)

As long as D< 2, all integrals are UV-convergent in the limit of ε→ 0.
Thus no additional counter-terms are needed. The only possible UV-diver-
gence is when first taking D→ 2 before ε→ 0. Note however, that this
divergence only effects the contribution to the free energy (proportional to
the counter-term 1), but cancels in all properly normalized observables.

General analysis. We now consider the MOPE for the operator with
one δd(r− r′) and P =∑

i

pi fields r

O(x,y,zi ) = δd(r(x)− r(y))
N∏
i=1

:rpi (zi ):m (4.67)
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when the N + 2 points x, y, zi → o. The generating functional for these
operators is

δd(r(x)− r(y))
N∏
i=1

:eqi r(zi ):m=
∫

ddk
(2π)d

eik(r(x)−r(y))
N∏
i=1

:eqi r(zi ):m

=
∫

ddk
(2π)d

:e
ik(r(x)−r(y))+∑

i

qi r(zi )
:m

×e
−k2[Gm(0)−Gm(x−y)]+1

2
∑
i �=j

qiqjGm(zi−zj )+i
∑
i

kqi [Gm(x−zi )−Gm(y−zi )]
.

(4.68)

Expanding the normal ordered operator in x, y and z, using the short-dis-
tance expansion for the propagator Gm and integrating over k we get the
MOPE. We see that in this MOPE for (4.67) local operators appear, of the
form

A = rM∇r1 r∇r2 r · · ·∇rQ r, 0�M�P, rj >0. (4.69)

The dimension of the operator (4.67) is dim[O]= ε − 2D + P(2−D)/2,
while the dimension of (4.69) is dim[A]= (M +Q)(2−D)/2− R, where
R=∑

j

rj �Q. Hence the coefficients in the MOPE

O(x,y,zi ) =
∑
A

COA (x,y,zi;m)A(o) (4.70)

scale as

COA (Sx, Sy, Szi;m) ∼ SωC0
A(x,y,zi;m)+· · · , (4.71)

where

ω=dim[O]−dim[A]=ε−2D+(P −M)(2−D)/2+Q(4−D)/2+(R−Q).
(4.72)

There will be short-distance UV divergences if the integration over the
N +1 independent positions x, zi is not convergent. This occurs if

D(N +1)+ω�0⇒ ε+D(N −1)+ (P −M)2−D
2
+Q4−D

2
+R−Q � 0.

(4.73)
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The case N = 0 has already been studied. When N � 1, since P �M and
R�Q we see that as long as D< 2 the condition (4.72) is satisfied only
if ε=0, N =1 and P =M. Let us look at what this last condition means.
P =M means that all the rpi in O appear in A, namely that no combina-
tion of propagators of the form [

∏
Gm(x− zi )−Gm(y− zi )]

∏
G(zj − zk)

appear in the coefficient C of the MOPE, which therefore depends only on
x−y. In other words, this particular coefficient comes from the product of
two independent expansions

1. The N =0 MOPE δd(r(x)− r(y)) → |x−y|ε−2D1l

2. The trivial OPE
∏
i

:rpi (zi ): → :rP : with coefficient 1.

and contains no connected diagram with propagators connecting any of the
zi ’s to x or y. Thus this apparent divergence is not real. It is part of the
N =0 leading divergence at ε=D and disappears in the connected expec-
tation value 〈· · · δ(r(x)− r(y))U(r(z)) · · · 〉connected

m .
All other coefficients of the MOPE have scaling dimension ω, which

satisfy the inequality (4.72). No additional UV divergences occur beyond
those which appear already for the free manifold and the manifold in a
harmonic potential, even when ε=0.

The same argument can be developed when there are two δ operators
and several U ’s. One can show that when considering the short-distance
expansion of

δd(r(x0)− r(y0))δ
d(r(x1)− r(y1))

∏
i

U(xi )
∏
j

U(yj ),

x1, xi → x0 and y1, yi → y0 (4.74)

bilocal operators are generated by the MOPE. Power counting shows nev-
ertheless that no additional UV divergence appears beyond those already
studied for x1→x0, y1→y0 while all other distances remain finite.

This is sufficient to prove (at least at one loop) that the counterterms
which make the SAM model UV finite at ε=0 also render the SAM in a
confining potential UV-finite, as long as D<2.

The limit D→ 2. It is interesting to notice that there is a potentially
divergent term when ε=0 and D→2, which corresponds to

N =1, Q=R=0, 0�M<P arbitrary. (4.75)

(We have already seen that the case M=P is not relevant). This fact is not
unrelated to the following observation. In the MOPE (4.48) for the single
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bilocal operator δ(r− r′), the third term, which is a subdominant term in
the MOPE of the form

δd(r(x)− r(y)) → m2|x−y|ε−2D+2 1l

is not UV divergent if D < 2, but when D→ 2 it becomes of the same
order as the divergent term

δd(r(x)− r(y)) → |x−y|ε−D :(∇r)2:

and is potentially dangerous when D→2. Since this term depends on m,
it depends linearly on the potential V (r), like the N=1 terms that we con-
sider here. It would be interesting to study this more.

Since Q = R = 0, this means that there are no ∇r involved in the
MOPE and we are only interested in the terms of the MOPE of the form

δd(r(x)− r(y)) :rp(z): → :rm(o):, 0�m<p. (4.76)

It is quite easy to compute the corresponding coefficients. We find

δd(r(x)− r(y)) :eαr(z):m → (4π)−d/2 [Gm(0)−Gm(x−y)]−d/2

×e−((α2/4)(Gm(x−z)−Gm(y−z))2/Gm(0)−Gm(x−y)) :eαr(z):m
(4.77)

hence at short distances

δd(r(x)−r(y)) :eαr(z):m → (4π d0)
−d/2 |x−y|ε−2De−(α

2d0/4)H(x,y,z) :eαr(z):m
(4.78)

with the function H(x,y,z) defined as

H(x,y,z) =
(|x−z|2−D−|y−z|2−D)2

|x−y|2−D (4.79)

or, after averaging with weight exp(α2J/4)

δd(r(x)− r(y)) :eJ r2(z):m
→ (4π d0)

−d/2 |x−y|ε−2D

× [1−Jd0H(x,y,z)]
−d/2 :eJ r2(z)[1−Jd0H(x,y,z)]

−1
:m (4.80)
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4.4. Renormalization

4.4.1. Explicit form of the UV Divergences for the Determinant
det′(S′′[V ])

From the definition (4.14) of tr[O] as an x integral and the MOPE
(4.48) for δd(r− r′), we see that the x integral (4.14) has short-distance UV
divergences if ε�D. The usual rule of dimensional regularization

∫
dDx |x|−a = SD 1

D−a + finite terms, (4.81)

implies that tr[O] has an UV pole at ε=D, proportional to the insertion
of the identity operator 1l, i.e.

tr[O] = C0
1

ε−D 〈1l〉V + regular terms at ε=D, (4.82)

(of course 〈1l〉V =1), with the residue C0 given by

C0=C0(D, d)=SD [4π d0(D)]
−(d/2) . (4.83)

SD is the volume of the unit sphere in R
D and d0(D)= 1/(2−D)SD the

coefficient of the first subleading term in the OPE of G(x); they are given
in (4.34).

Using dimensional regularization, tr[O] is analytically continued to
0<ε<D. The next term in the MOPE gives the UV divergence at ε=0,
hence a pole given from (4.48) by

tr[O] = C1
1
ε
〈:(∇r)2:0〉V + regular terms at ε=0 (4.84)

with residue

C1=C1(D, d)=−SD 1
4Dd0(D)

[4πd0(D)]
−d/2 . (4.85)

Similarly, tr[O2] has an UV pole at ε=0, given from (4.52) by

tr[O2] = C2
1
ε
〈δd(r1(x0)− r2(y0))〉V + regular terms at ε=0 (4.86)
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with residue

C2=C2(D, d)=S2
D

1
2−D

�
(
D/(2−D))2

�
(
2D/(2−D))

[
4πd0(D)

]−d/2
. (4.87)

Here r1 and r2 are associated to two independent copies M1 and M2 of
the infinite flat manifold M. Thus we have

δd(r1(x0)− r2(y0))〉V =
∫
dd r 〈δd(r1(x0)− r)〉V 〈δd(r2(y0)− r)〉V

=
∫
dd r [〈ρ(r)〉V ]2 ,

where ρ(r) is the manifold density in bulk space. Using (4.10) and the dis-
cussion of Section 4.2, we see that the logarithm of the determinant of the
instanton fluctuations L= log(D) has a UV pole at ε=0 given by

L = log
(
det′[S ′′]) = 1

ε

(
−C1

〈
(∇r)2

〉
V
− C2

2

∫
dd r [〈ρ(r)〉V ]2

)
+ LMS,

(4.88)

where LMS is the UV finite part of L, obtained by subtracting the UV
pole of L at ε=0; hence the “MS” (for minimal subtraction) subscript.

4.4.2. Renormalized Effective Action

We now study how the perturbative counterterms modify the effec-
tive action S[V ] used in the instanton calculus. For this purpose, we now
repeat for the renormalized theory the transformation S[r]→S[V ] and the
rescalings performed for the bare theory in Sections 2.4 and 3.2.

Renormalized Original Action Sren[r]. The renormalized action for the
SAM model is according to ref. 13

Sren[r] = Z(br)

2

∫
x∈M
(∇r(x))2+ brZb(br)µ

ε

2

∫∫
x,y∈M
δd(r(x)− r(y)) (4.89)

br is the dimensionless renormalized coupling constant and µ is the ren-
ormalization mass scale. At one loop the counterterms Z(br) and Zb(br)

are found to be

Z(br) = 1−br
C1

ε
, Zb(br) = 1+br

1
2

C2

ε
(4.90)
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with C1 and C2 the same residues as those obtained above in (4.85) and
(4.87). We first rewrite the renormalized action as the bare action S[r] plus
the “one-loop counterterm” �1S[r].

Sren[r] = S[r] + �1S[r],

S[r] = 1
2

∫
x∈M
(∇r(x))2+ brµ

ε

2

∫∫
x,y∈M
δd(r(x)− r(y)),

�1S[r] = −br
C1

ε

1
2

∫
x∈M

(∇r(x))2 + b2
rµ

ε

4
C2

ε

∫∫
x,y∈M

δd(r(x)− r(y)).

(4.91)

Note that (∇r)2=:(∇r)2:0+d δD(0)1l and that in dimensional regularization
δD(0)=0.

Renormalized Effective Action Sren[V ]. We repeat the transformation
of Section 2.4 to pass from the action S[r] to the effective action S[V ] for
the effective field V (r), keeping �1S[r] as a perturbation. We thus arrive
at the representation for the renormalized partition function Zren(br)

∫
D[r] exp(−Sren[r]) =

∫
D[r]D[V ] exp

(
−
∫

x

[
1
2
(∇r)2+V (r)

]

+ 1
2brµε

∫
r
V 2−�1[r]

)

=
∫

D[V ] exp
(
−FM[V ]

+ 1
brµε

∫
r
V 2
)
〈exp (−�1S[r])〉V . (4.92)

We now perform the same rescalings and the same rotation in the complex
coupling-constant plane as for the bare theory (see Section 3.2):

x→
(
|br|µεLD

) 1
D−ε

x, r→
(
|br|µεLD

) 2−D
2(D−ε) x, θ =Arg(br)→±π.

(4.93)

Starting from a finite manifold M with size L (volume LD), we end up
with a rescaled manifold Ms with volume Vol(Ms) and renormalized
effective coupling gr

gr= 1
Vol(Ms)

, Vol(Ms)=|br|−
D
D−ε [Lµ]−

Dε
D−ε . (4.94)
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The functional integral becomes

Zren(br)=
∫

D[V ] exp

(
−FMs [V ]+ e

−iθ

2gr

∫
r
V 2

) 〈
exp (−�′1S[r])

〉
V

(4.95)

�′1S[r] = br

[
− C1

ε

1
2

∫
Ms

(∇r)2+ gre
iθ

4
C1

ε

∫∫
δd [(r− r′)

]
. (4.96)

As in Section 3.2, θ =Arg(br). We are interested in the semiclassical limit
br→0. Since this limit is a thermodynamic limit, where the volume of the
manifold Vol(Ms)=g−1

r →∞, it is natural to assume that clustering takes
place (since for the instanton configuration the manifold is confined in the
potential V ). We may thus approximate the contribution of the counter-
term by

〈
exp (−�′1S[r])

〉
V
= exp

(− 〈�′1S[r]
〉
V

)
(4.97)

up to terms exponentially small in gr. The last expectation value is

〈
�′1S[r]

〉
V
= brVol(Ms)

(
− 1

2
C1

ε

〈
(∇r(o))2

〉
V

+e
iθgr

4
C2

ε

∫
x

〈
δd(r(o)− r(x)

〉
V

)
. (4.98)

Now we easily check that

brVol(Ms)=br/gr= eiθ
(
g

1/D
r µL

)−ε
(4.99)

and that when ε=0 it reduces to eiθ =O(1). The first expectation value in
(4.98)

〈
(∇r)2

〉
V

is of order O(1). The study of the second expectation value
is slightly more subtle. We write

∫
Ms

dDx
〈
δd(r(o)− r(x)

〉
V
=
∫

ddk
(2π)d

∫
Ms

dDx
〈
eik(r(o)−r(x))

〉
V
.

(4.100)

From clustering we expect that what dominates is the large-|x| regime
where

〈
eik(r(o)−r(x))

〉
V
=
〈
eikr(o)

〉
V

〈
e−ikr(x)

〉
V
= 〈

ρ̂(k)
〉
V

〈
ρ̂(−k)

〉
V

(4.101)



Instanton Calculus for the Self-Avoiding Manifold 929

and where ρ̂(k) is the Fourier transform of the manifold density ρ(r), see
(3.42). So we finally obtain

gr

∫
x

〈
δd(r(o)− r(x)

〉
V
� grVol(Ms)

∫
ddk
(2π)d

〈
ρ̂(k)

〉
V

〈
ρ̂(−k)

〉
V

=
∫

r
[〈ρ(r)〉V ]2 (4.102)

also of order O(1). (4.100) contains an UV-divergence when x→ 0 and
this will give a double pole when ε→ 0 in (4.98), but this divergence is
of order brVol(Ms)gr� gr. This is in fact a two-loop divergence that we
do not have to consider here.

The final result is that we can rewrite the renormalized functional
integral (at one loop) as

Zren(br) =
∫

D[V ] exp
(
− 1
gr

S[V ]− eiθg
(−ε/D)
r (µL)−ε�1S[V ]

)

(4.103)

with S[V ] the bare effective action (3.35) and �1S[V ] the one-loop count-
erterm for the effective action

�1S[V ] = − C1

ε

1
2

〈
(∇r)2

〉
V
+ C2

ε

eiθ

4

∫
r
〈ρ(r)〉V 2. (4.104)

This amounts to state that the renormalised effective action Sren[V ] at one
loop is

Sren[V ] = S[V ]+ eiθg
((D−ε)/D)
r (µL)−ε�1S[V ], (4.105)

with S[V ] the original bare effective action (3.35), and �1S[V ] given by
(4.104).

4.4.3. One-Loop Renormalizability

It is now easy to show that the renormalized action for the SAM
model which makes perturbation theory finite at one loop makes also the
determinant factor for the instanton D=det′(S ′′[V inst]) UV finite at ε=0.

Instanton Contribution in the Renormalized Theory. If we evaluate the
renormalized functional integral around the instanton saddle point V inst
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by the saddle-point method, we see that the contribution at one loop of
the instanton in the bare theory (in (3.53) and (3.54))

e−(1/g)S[V ] ∣∣det′(S ′′[V ])
∣∣−(1/2) = e−(1/g)S[V ]−(1/2)Re(L) (4.106)

is replaced in the renormalized theory by

e−(1/gr)S[V ] ∣∣det′(S ′′[V ])
∣∣−(1/2) eg−(ε/D)r (µL)−ε�1S[V ]

= e−(1/gr)S[V ]−(1/2)Re(Lren), (4.107)

where the “renormalized trace-log” of the instanton-fluctuations’ determi-
nant Lren= log(Dren) is simply (from now on we set θ =±π )

Lren = L−2
(
g

1
D
r µL

)−ε
�1S[V ]. (4.108)

Limit ε→0 and UV Finiteness. From Eq. (4.104) for the counterterm
and Eq. (4.88) which gives the UV poles of L, one easily checks that Lren
is UV finite when ε→0. It is given in this limit by

Lren = LMS−
(

1
D

log gr+ log(µL)
)

B, when ε=0, (4.109)

where LMS is the UV-finite part of L, as defined in Eq. (4.88), and the
coefficient B is (minus) the residue in (4.88)

B = C1

〈
(∇r)2

〉
V
+ C2

2

∫
r
V (r)2. (4.110)

(We used the instanton equation 〈ρ(r)〉V + V (r)= 0 to simplify the last
term).

Finally it is shown in Appendix E that for the instanton potential V
we have

〈(∇r)2〉V = −d
(

1− ε

D

)−1
S,

∫
r
V (r)2 = 2

(
1− ε

D

)−1
S,

(4.111)

where S=S[V ] is the instanton action. Hence for ε=0 we have

B = (−d C1+C2)S. (4.112)
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UV pole at ε=D. A similar calculation shows that the counterterm
which subtracts the perturbative UV pole in C0/(ε−D) also subtracts the
leading divergence for the instanton. This justifies our use of dimensional
regularization to deal with this divergence.

4.5. Large Orders for the Renormalized Theory

4.5.1. Asymptotics

From these results we can easily obtain the large-orders asymptotics
for the renormalized theory at ε=0. The semiclassical estimate (3.56) for
the discontinuity of the partition function Z(b) becomes for the renormal-
ized partition function Zren(br)

Im Zren(br) = ∓ 1
2
L−2D |br|4/(2−D) e−(1/|br|)SW |Dren]−(1/2)

= ∓1
2
L−2D |br|(4/(2−D))+(B/(2D)) (µL)B2 e−(1/|br|)SW |DMS]−(1/2)

(4.113)

with DMS = exp(LMS). The large order asymptotics for the renormalized
partition function

Zren(br) =
∞∑
k=0

Zren
k bkr (4.114)

are

Zren
k � (−1)k �

[
k− 4

2−D −
B

2D

]

× 1
2π

L−2D (µL)
B
2 W |DMS]−(1/2) S(4/(2−D)+(B/(2D))−k

(4.115)

and the analog of (3.59) obtained by using d/2=4/(2−D)−2 at ε=0.

4.5.2. Discussion

From these semiclassical estimates we expect that the Borel trans-
form of the renormalized theory still has a finite radius of convergence,
given by the instanton effective action S. We also see that as in ordinary
QFT, renormalization at ε= 0 implies a dependence on the renormaliza-
tion scale µ, an anomalous dependence on the size L of the manifold
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(anomalous dimension) and an anomalous power dependence in the
renormalized coupling constant gr. These anomalous dimensions are given
by the factor B, which combines the perturbative anomalous dimensions
C1 and C2 with the instanton action S.

5. VARIATIONAL CALCULATION

In ref. 14 we used a Gaussian variational approximation to compute
the instanton V inst

var and its action S inst
var . Moreover we showed that the var-

iational method was a good approximation for the instanton in the limit
d→∞ (for fixed ε), and the 0th order of a systematic 1/d expansion. We
computed explicitly the first correction in the 1/d expansion, and showed
that for the instanton action S inst

var it was finite when ε→0.
We apply the same strategy here to compute the fluctuations around

the instanton, namely the determinant factor

D=det′(S")=det′(1l−O), Or1r2 =−
δ2E [V ]

δV (r1)δV (r2)
(5.1)

We first recall briefly the principle of the variational method. Then we
present a direct calculation of D using a variational estimate for O. We
show that this method does not treat properly the fluctuations and thus
the UV divergences. We then present a calculation of D based on the var-
iational method and the reorganization of the perturbative expansion at
large d already used in ref. 14 and in Section 4.3.

5.1. Variational Approximation for the Instanton

We first briefly recall the variational approximation developed in ref.
14. We use a trial Gaussian Hamiltonian Htrial[r] of the form

Htrial[r] =
∫

M
dDx

[
1
2
(∇r)2 + 1

2
(r− r0)M(r− r0)

]
, (5.2)

where the variational parameters are the position of the instanton r0 and
the variational mass matrix M= (Mab) (a symmetric real d × d matrix).
The variational approximation for the free energy of the manifold M in
the potential V is

Fvar[V ] = min
r0,M

[
Fvar[V ;M, r0]

]
, Fvar[V ;M, r0] = Ftrial+〈H −Htrial〉Htrial .

(5.3)
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Ftrial=− ln
[∫ D[r] exp (−Htrial[r])

]
is the free energy for the trial Hamilto-

nian, and is a function of M only (translational invariance). We are inter-
ested in the limit of the infinite flat manifold M→R

D, and we consider
the free energy densities

Evar[V ] = 1
Vol(M)

Fvar[V ], Evar[V ;M, r0] = 1
Vol(M)

Fvar[V ;M, r0].

(5.4)

Obviously

Evar[V ] = min
r0,M

[Evar[V ;M, r0]
]
. (5.5)

Evar[V ;M, r0] can be written in terms of the Fourier transform of the
potential V (r)

Ṽ (p) =
∫
dd r e−ipr V (r). (5.6)

and in ref. 14 is given as

Evar[V ;M, r0] = 1
D

�
(
2− D

2

)
(4π)D/2

tr
(
M
D/2

)

+
∫

ddp
(2π)d

Ṽ (p) eipr0−pGp/2, (5.7)

where G= (Gab) is the “variational tadpole” matrix, defined as

G = G(M) =
∫

dDk

(2π)D
1

k2+M
= �

(
1− D

2

)
(4π)D/2

M
(D/2)−1. (5.8)

Extremization of (5.7) with respect to the variational parameters M and
r0 for fixed V gives the two equations for the variational parameters M=
M[V ] and r0= r0[V ] as a function of the potential V

Mab = −
∫

ddp
(2π)d

papb Ṽ (p) eipr0−pGp/2, (5.9)

0 =
∫

ddp
(2π)d

pa Ṽ (p) eipr0−pGp/2. (5.10)
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Inserting these solutions in (5.7) gives Evar[V ]=Evar [V,M[V ], r0[V ]]. Now,
extremization of the variational effective action

Svar[V ] = Evar[V ] + 1
2

∫
V 2 (5.11)

with respect to variations of V (r) leads to the equation for the variational
instanton V inst

var ,

V inst
var (r) +

〈
δd
(
r− r(x0)

)〉
Htrial

= 0. (5.12)

The variational instanton is rotationally invariant (as expected), so the
associated mass matrix Mvar =M[V inst

var ] and the tadpole matrix Gvar =
G(M[V inst

var ]) are constants times the unit matrix 1l,

Mvar=Mvar 1l, Gvar=Gvar 1l, Gvar= �((2−D)/2)
(4π)D/2

Mvar
(D/2)−1.

(5.13)

(5.12) implies that the variational instanton has Gaussian profile, and (5.9)
gives Mvar as the solution of

2Mvar (4π)d/2Gvar
1+(d/2) = 1. (5.14)

The variational instanton is a Gaussian well (centered at r0), its width is
given by

√
Gvar

V̂ inst
var (p) = −e−ipr0−(Gvarp2/2),

V inst
var (r) = − (2πGvar)

−d/2e−(r−r0)
2/(2Gvar). (5.15)

The variational instanton action was found to be(14)

S inst
var = Svar[V inst

var ] = GvarMvar

(
1− ε

D

)
. (5.16)
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5.2. A Poor Man’s Direct Variational Calculation of the Instanton

Determinant D
5.2.1. The Approximation

We have to compute the determinant of the fluctuations around the
instanton solution V inst

D = det′V

[
d2S[V ]

dV (r)dV (r′)

]∣∣∣∣∣
V=V inst

. (5.17)

In section 5.1, we have calculated the instanton solution in the variational
approximation V inst

var . A first approximation for D is to replace it by

Dvar = det′V

[
d2S[V ]

dV (r)dV (r′)

]∣∣∣∣∣
V=V inst

var

, (5.18)

but this is still difficult to compute. A further approximation is to replace
this by

Dvar′ = det′V

[
d2S[V ]

dV (r)dV (r′)

]∣∣∣∣∣
V=V inst

var

. (5.19)

since we have seen that Svar[V ] for a general potential V is easy to calcu-
late.

This first and simple approximation (5.19) is presented in details in
this section. We shall see from the result that it misses important features
of the true result, especially the UV-divergences due to the fluctuations,
which are expected as we have discussed in Section 4. In Section 5.3, we
will therefore calculate (5.18), which seems to be more appropriate.

5.2.2. Reduction to a Finite Dimensional Determinant
in Variational Space

In order to calculate (5.19), we start from (5.7), and we need

d

dV (r)
d

dV (r′)
Evar[V ]. (5.20)

We use

d

dV (r)
= ∂

∂V (r)
+ dr0

dV (r)
∂

∂r0
+ dM

dV (r)
∂

∂M
. (5.21)
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Thus

dEvar

dV (r)
= ∂Evar

∂V (r)
+ dr0

dV (r)
∂Evar

∂r0
+ dM

dV (r)
∂Evar

∂M
= ∂Evar

∂V (r)
, (5.22)

since due to the saddle-point equations

∂Evar

∂r0
=0 and

∂Evar

∂M
=0. (5.23)

The second derivative is

d2Evar

dV (r)dV (r′)
= ∂2Evar

∂V (r)∂V (r′)
+ dr0

dV (r′)
∂2Evar

∂V (r)∂r0
+ dM

dV (r′)
∂2Evar

∂V (r)∂M

= dr0

dV (r′)
∂2Evar

∂V (r)∂r0
+ dM

dV (r′)
∂2Evar

∂V (r)∂M
, (5.24)

since the explicit dependence of Evar on V is linear. Using the saddle-point
equations (5.23) we obtain

d

dV (r)
∂Evar

∂r0
= 0= ∂2Evar

∂V (r)∂r0
+ dr0

dV (r)
∂2Evar

∂r0∂r0
+ dM

dV (r)
∂2Evar

∂r0∂M
(5.25)

d

dV (r)
∂Evar

∂M
= 0= ∂2Evar

∂V (r)∂M
+ dr0

dV (r)
∂2Evar

∂r0∂M
+ dM

dV (r)
∂2Evar

∂M∂M
. (5.26)

Eqs. (5.24) to (5.26) lead to (pay attention to the counter-intuitive sign)

d

dV (r)
d

dV (r′)
Evar[V ]=−

⎛
⎜⎜⎜⎝

dM

dV (r)
dr0

dV (r)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
∂2Evar

∂M∂M

∂2Evar

∂M∂r0

∂2Evar

∂r0∂M

∂2Evar

∂r0∂r0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

dM

dV (r′)
dr0

dV (r′)

⎞
⎟⎟⎟⎠ (5.27)

with (remind that everything is evaluated at the saddle-point)

Evar

[
V inst

var ,M, r0

]
= 1
D

� (2− (D/2))
(4π)D/2

tr
(
M
D/2

)

− 1
(2π)d/2

det(A1l+G)−1/2e−r0(A1l+G)−1r0/2. (5.28)

The quantity A is defined as follows:

A=Ginst
var , (5.29)
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i.e. it is the same as G, defined in (5.13), but always taken at the var-
iational instanton. Thus when varying V , and thus M and G, only G

changes, but not A.
The determinant to be calculated is (the prime indicating that the

zero-modes are omitted)

Dver′ = det′V

[
d2Svar[V ]
dV (r)dV (r′)

]
=det′V

[
δd(r− r′)+ d2Evar[V ]

dV (r)dV (r′)

]

=det′V

⎡
⎢⎢⎢⎣δd(r− r′)−

⎛
⎜⎜⎜⎝

dM

dV (r)
dr0

dV (r)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
∂2Evar

∂M∂M

∂2Evar

∂M∂r0

∂2Evar

∂r0∂M

∂2Evar

∂r0∂r0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

dM

dV (r′)
dr0

dV (r′)

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

(5.30)

Now we use the cyclic invariance of the determinant4 to reduce the above
expression (5.30), which is the determinant of an integral kernel opera-
tor over R

d , to the determinant of a finite dimensional matrix, acting on
the space of the variational parameters r0 (d dimensional) and M (d× d-
dimensional):

=det′r0,M

⎡
⎢⎢⎢⎣1l−

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
ddr

⎛
⎜⎜⎜⎝

dM

dV (r)
dr0

dV (r)

⎞
⎟⎟⎟⎠⊗

⎛
⎜⎜⎜⎝

dM

dV (r)
dr0

dV (r)

⎞
⎟⎟⎟⎠

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎛
⎜⎜⎜⎝
∂2Evar

∂M∂M

∂2Evar

∂M∂r0

∂2Evar

∂r0∂M

∂2Evar

∂r0∂r0

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

= det′r0,M

⎡
⎢⎢⎢⎢⎣1l−

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
ddp
(2π)d

⎛
⎜⎜⎜⎜⎝

dM

dṼ (p)
dr0

dṼ (p)

⎞
⎟⎟⎟⎟⎠⊗

⎛
⎜⎜⎜⎜⎝

dM

dṼ (−p)
dr0

dṼ (−p)

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎛
⎜⎜⎜⎝
∂2Evar

∂M∂M

∂2Evar

∂M∂r0

∂2Evar

∂r0∂M

∂2Evar

∂r0∂r0

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

(5.31)

1l is the corresponding d(d + 1)-dimensional unit-matrix. In fact the vari-
ational mass matrix parameter space is d(d+1)/2 dimensional, since one
has to consider only symmetric mass matrices M. However in our calcu-
lation it is simpler to consider the d2-dimensional variational space of all
real matrices M.

4If X is a n×m matrix and Y a m× n matrix, and det′ denotes the product over non-zero
eigenvalues, we have the general identity det′[1−XY ]=det′[1−YX], although the first deter-
minant is the determinant of a n×n matrix, and the second one the determinant of a m×m
matrix.
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5.2.3. The Calculation

We now evaluate the elements of the matrix. First of all, due to rota-
tional invariance and parity of the instanton, the off-diagonal blocks of
the two matrices {�} and (�) vanish

∂2Evar

∂r0∂M
= 0 (5.32)

∫
ddp
(2π)d

∂M

∂Ṽ (p)

∂r0

∂Ṽ (−p)
= 0. (5.33)

The second relation will be explicitly checked below. As a consequence
(5.31) takes block-diagonal form, leading to the factorization of the deter-
minant as the product of the determinants over each diagonal block

Dvar′ = D
(1)
var′D

(2)
var′ (5.34)

D
(1)
var′ = det′

[
1l−

∫
p

dM

dṼ (p)
⊗ dM

dṼ (−p)

∂2Evar

∂M∂M

]
(5.35)

D
(2)
var′ = det′

[
1l−

∫
p

dr0

dṼ (p)
⊗ dr0

dṼ (−p)

∂2Evar

∂r0∂r0

]
. (5.36)

Second, we shall see that the second block, relative to the zero-mode col-
lective coordinate r0, is also 0. Indeed, we shall show that

∫
p

dr0

dṼ (p)
⊗ dr0

dṼ (−p)

∂2Evar

∂r0∂r0
= 1l (5.37)

so that

D
(2)
var′ = det′ [0] = 1. (5.38)

Thus it remains to compute the determinant of the first block, involving
only dependencies on the variational mass M. Using (5.28) and the matrix
derivative rules gathered in Appendix D, we find

∂2Evar

∂M∂M
= A

M

2−D
32

[2(2+D)E−d(2−D)P] (5.39)
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with E the projector on symmetric matrices and P the projector on the
unity matrices

Eij,kl = 1
2

(
δikδjl+ δilδjk

)
(5.40)

Pij,kl = 1
d
δij δkl . (5.41)

Next, we calculate δMij /δV (r). Using Eq. (5.9) and varying V yields

δMij [V ] = −
∫

ddp
(2π)d

pipj δṼ (p) eipr0 e−(1/2)p
ipjGij

+1
2

∫
ddp
(2π)d

pipj Ṽ (p) eipr0 e−(1/2)p
ipjGij pkplδGkl . (5.42)

Using that at the saddle-point δG= ((D−2)/2) (A/M)δM and Ṽ (p) from
Eq. (5.15), we obtain

δMij [V ] = −
∫

ddp
(2π)d

pipj δṼ (p) eipr0 e−(1/2)p
2A

−1
2

∫
ddp
(2π)d

pipj e−p2A pkpl
D−2

2
A

M
δMkl

= −
∫

ddp
(2π)d

pipj δṼ (p) eipr0 e−(1/2)p
2A

+2−D
8

δMkl

(
dPij,kl+2Eij,kl

)
. (5.43)

This leads to

2−D
8

dPδM− 2+D
4

δM=
∫

ddp
(2π)d

pipj δṼ (p) eipr0 e−(1/2)p
2A (5.44)

and finally upon varying δV

δM

δṼ (p)

(
2−D

8
dP− 2+D

4
E

)
=p⊗p eipr0 e−(1/2)p

2A. (5.45)

This can be inverted (in the subspace of symmetric matrices) as

δM

δṼ (p)
=
(
− 4

2+DE− 4d(2−D)
(2+D)(4−2d+2D+Dd)P

)
p⊗p eipr0 e−(1/2)p

2A.

(5.46)
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Next, we need (δM/δV (r))⊗ (δM/δV (r)))(∂2Evar/∂M∂M). Due to the sad-
dle-point equations, or more explicitly looking at Eqs. (5.45) and (5.39),
the following combination is relatively simple:

δM

δṼ (p)

∂2Evar

∂M∂M
=− A

M

2−D
4

p⊗p eipr0 e−(1/2)p
2A, (5.47)

and after (Gaussian) integration over p we obtain finally

∫
ddp
(2π)d

δM

δṼ (−p)
⊗ δM

δṼ (p)

∂2Evar

∂M∂M
= 2−D

2+DE+ 2d(2−D)
(2+D)(ε+2−D)P.

(5.48)

The first block determinant (5.35) is therefore the determinant of the
following operator acting on the d(d + 1)/2 dimensional space of d × d
symmetric matrices

D
(1)
var′ =det′

(
2D

2+DE− 2d(2−D)
(2+D)(ε+2−D)P

)
. (5.49)

Since in this space the projector E reduces to the identity, while P is the
projector on the one-dimensional subspace generated by the identity, it
is easy to see that the operator has d(d + 1)/2− 1 eigenvalues equal to
2D/(2+D), plus one eigenvalue equal to 2D/(2+D)− 2d(2−D)/(2+
D)(ε+2−D)=−2(D− ε)/(ε+2−D). Hence the final result is

D
(1)
var′ = Dvar′ = − 2(D− ε)

ε+2−D
(

2D
2+D

)(d(d+1)/2)−1

. (5.50)

5.2.4. Terms Associated with the Zero Modes

Before discussing this result, we calculate the other entries of the
matrix (5.27), associated with the 0-modes. First we vary Eq. (5.10) with
respect to δr0 and the corresponding δṼ (p):

∫
ddp
(2π)d

δṼ (p) ip e−(1/2)pGpeipr0 =
∫

ddp
(2π)d

Ṽ (p)p e−(1/2)pGpeipr0(pδr0).

(5.51)
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Deriving with respect to δṼ (p) and evaluating at Vinst yields

ipi e−(1/2)Ap2
eipr0 =

∫
ddp
(2π)d

Ṽ (p)pi e−(1/2)pGpeipr0

(
p
dr0

dṼ (p)

)

= −Mij

drj0
dṼ (p)

=−Mδij
drj0
dṼ (p)

. (5.52)

This gives

dri0
dṼ (p) Vinst

=− 1
M
ipi e−(1/2)Ap2

eipr0 . (5.53)

Combining Eqs. (5.46) and (5.53) checks (5.33).
We now calculate the determinant of the lower block, for which we

need

∫
ddp
(2π)d

drj0
dṼ (p)

drk0
dṼ (−p)

= 1
M2

∫
ddp
(2π)d

pjpke−Ap2 = 1
M
δjk, (5.54)

as well as

∂2Evar

∂ri0∂rj0 Vinst

= ∂

∂ri0

∂

∂rj0

∫
ddp
(2π)d

Ṽ (p)eipr0e−
1
2 p·G·p

=
∫

ddp
(2π)d

pipj e−Ap2 =Mδij , (5.55)

where we used that the first term of Evar in (5.7) does not depend on r0,
as well as the instanton at the saddle-point from Eq. (5.15) and the mass
from Eq. (5.14). Hence the second block matrix, relative to the zero mode
r0, is identically zero. This is not surprising. Therefore

{∫
ddp
(2π)d

drj0
dṼ (p)

drk0
dṼ (−p)

}
∂2Evar

∂ri0∂rj0
= δik, (5.56)

and indeed the determinant (5.31) is the contribution of the d translational
instanton zero-modes.

D
(2)
var′ = det′r0

[0] = 1. (5.57)
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5.2.5. Discussion

We now discuss our result (5.50) for Dvar′ in our simple variational
approximation. We see that Dvar′ is finite and negative for ε <D, thus we
recover the unstable mode with a negative eigenvalue for S ′′. However we
see that for ε = 0, Dvar′ is still finite, while we expect from our general
argument that D will have UV divergences. Thus our approximation does
not properly take into account the short-wavelength fluctuations around
the instanton, and renormalization, which is important when ε→0.

Finally it is interesting to look at the behavior of Dvar′ in the limit
d→∞, ε fixed. We find for the logarithm of Dvar′ ,

Lvar′ = log(Dvar′)�−d2
(

1− ε
4

)
=O(d) (5.58)

as expected from the variational approximation. However, as we shall
see later, the better approximation Lvar and the exact solution L behaves
respectively at large d as

Lvar� d

ε2
, L� d

2

ε
. (5.59)

5.3. Expansion Around the Variational Approximation and 1/d

Expansion

5.3.1. The Large-d Limit

A better method to compute D is to start from (4.3)

Or1r2 =
∫

x

〈
δd(r1− r(o))δd(r2− r(x)))

〉conn

V inst
(5.60)

(o is an arbitrary point on M=R
D) and to make a perturbation expan-

sion around the variational Gaussian Hamiltonian Htrial. Since the prob-
lem is invariant under translations, we chose for V the instanton centered
at the origin (r0=0). m will denote the variational mass (M=m2) and Gm
the variational tadpole Gm= (4π)−D/2�((2−D)/2)m2−D. m is solution of
(5.14), that we rewrite

2m2Gm= (4πGm)−d/2. (5.61)

Large-d Limit and the Variational Approximation. The first crucial
point used in ref. 14 is that when the variational instanton potential (5.15)
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is written in terms of normal products relative to the variational mass m,
it takes the simple form

V inst
var (r)=−(4πGm)−d/2 :e−(r

2/4Gm):m = −2m2Gm :e−(r
2/4Gm):m (5.62)

that we rewrite as the variational trial potential (1/2)m2r2 plus a pertur-
bation U(r) as in Section 4.3 (see (4.28))

V inst
var (r) = −2m2Gm 1l + m2

2
:r2:m + U(r),

U(r) = −2m2Gm

∞∑
n=2

1
n!

( −1
4Gm

)n
:
(
r2
)n

:
m

(5.63)

and to treat U(r) as perturbation, see (4.29) and Fig. 4.
The second point is that in the limit when

d →∞, ε fixed (5.64)

these perturbative terms are subdominant (of order 1/d) with respect to
the leading term obtained by replacing V by the trial harmonic potential
(m2/2) :r2:m. This is seen by rescaling x and r in units of the variational
mass m (as described in detail in Appendix G), so that m→ 1, and the
propagator Gm(x) becomes G(x)=G1(x)

Gm(x)→G(x)=Gm=1(x)= (2π)−
D
2 KD−2

2
(|x|) (5.65)

r

V

Fig. 4. The variational instanton (black) and its approximation by a harmonic potential
(grey) (here for D = 1, d = 4). Note that the curvature of V (r) is the quadratic term
before normal-ordering, whereas in the variational approximation the quadratic term after
normal-ordering appears.
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and the tadpole amplitude Gm becomes

Gm→ c0(D)=G(0)= (4π)−D/2�
(

2−D
2

)
� 1

4π
d

4− ε ,
when d→∞, ε fixed. (5.66)

c0(D) is noted C in ref. 14. When we shall not deal with the explicit
dependence on D of c0(D) we shall denote it simply by c0.

The variational instanton potential becomes (see Appendix G)

V inst
var (r) = −2c0 1l + 1

2
:r2: + U(r),

U(r) = −2c0

∞∑
n=2

1
n!

(−1
4c0

)n
:
(
r2
)n

:, (5.67)

where the normal product : · · · : refers to the normal product with respect
to the unit mass m=1, i.e. : · · · :=: · · · :m=1.

Since c0∼d, in perturbation theory, the 2n-leg vertices carry a weight
d1−n and closed loops carry a weight d (summation over bulk space indi-
ces). Counting the resulting factors of d for each graph, as in the large-N
expansion for vector models, only “cactus diagrams” with tadpoles survive
in the large-d limit. However within our normal product scheme, there are
no tadpoles. Therefore for any observable at large d we can replace

〈Observable〉
V inst

var
= 〈Observable〉m + subdominant terms in

1
d
, (5.68)

where 〈· · · 〉m refers to the expectation value with respect to the trial vari-
ational action

H var
trial =

∫
x

1
2
(∇r)2+ m

2

2
r2. (5.69)

For the same reason, as shown in ref. 14, at leading order in 1/d, the
variational instanton, solution of

V inst
var (r) +

〈
δd(r− r(o))

〉
m
=0 (5.70)

is a good approximation for the exact instanton V inst, solution of (3.41):

V inst(r) = V inst
var (r)

(
1+O(1/d)

)
. (5.71)
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The first correction of order 1/d was computed in ref. 14. Finally the
action for the variational instanton was found to be

S inst
var = mD

(
1− ε

D

)
c0(D). (5.72)

If we rescale the effective coupling constant g (or equivalently the initial
coupling constant b) in terms of the variational mass m,

g → mD g i.e., b → mD−ε b (5.73)

the instanton action becomes

S inst
var =

(
1− ε

D

)
c0(D) = O(d). (5.74)

This rescaling will the done at the end, but for the time-being, we keep the
explicit mass dependence.

Large-d Limit for O. For our problem, in the large-d limit, we shall
first approximate the Hessian O in the exact instanton background, with
kernel Or1r2 given by (5.60), by the Hessian O

var in the variational instan-
ton background, with kernel O

var
r1r2

given by

O
var
r1r2
=
∫

x

〈
δd(r1− r(o))δd(r2− r(x))

〉conn

V inst
var

(5.75)

and then approximate this O
var by its large-d limit O

var′ , with kernel

O
var′
r1r2
=
∫

x

〈
δd(r1− r(o))δd(r2− r(x))

〉conn

m
. (5.76)

This will be the leading term of a systematic (1/d) expansion, which can
be performed along similar lines as in ref. 14.

O
var′
r1r2

can easily be computed, since we now deal with a massive free
theory. It is even easier to compute its Fourier transform

Ô
var′
k1k2
=
∫

r1

∫
r2

e−i(k1r1+k2r2)O
var′
r1r2
=
∫

x

〈
eik1r(o)eik2r(x)

〉
m
−
〈
eik1r(o)

〉
m

〈
eik2r(x)

〉
m

= e−(k2
1+k2

2)Gm(0)/2
∫

x

[
e−k1k2Gm(x)−1

]
(5.77)

where Gm(x) is the massive scalar propagator (4.31). Note that we have
Gm=Gm(0).
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Zero Modes. In order to compute D, we must take into account the
translational zero modes of S ′′=1l−O and the projector P0 onto the sub-
space of zero modes. According to Section 3.3, these zero modes are the
partial derivatives of V inst, V zero

a =∂aV inst, and from Section 4.1 (see (4.6))
the projector is

P0r1r2 =c0

∑
a

∂aV
inst(r1)∂aV

inst(r2)

(with the constant c0 such that P
2
0 = P0). In the large-d limit we may

approximate P0 by P0
var

P0
var
r1r2
= c′0

∑
a

∂aV
inst
var (r1)∂aV

inst
var (r2) (5.78)

and since V inst
var is a Gaussian function, P

var
0 is easily computed. We obtain

for its Fourier transform

P̂0
var
k1k2
= − k1k2

m2
e−(k

2
1+k2

2)Gm(0)/2. (5.79)

Finally, in the large-order formulas such as (3.53), to the instanton zero-
modes is associated the weight factor

W = g− d
D

[
1

2πd

∫
r
(∇V inst)2

]d/2
.

In the large-d limit this gives

Wvar = g− d
D

[
1

2πd

∫
r
(∇V inst

var )
2
]d/2
= g− d

D

[
m2

2π

]d/2
=
[
g−

2
D

2π

]d/2
(5.80)

so that

log
(
Wvar)=O(d).
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5.3.2. Large-d Calculation of L

Series Representation for L. We now apply these results to the com-
putation of the determinant, or rather of its logarithm

L= log
(
det′[S ′′]) . (5.81)

Since S ′′ =1l−O and since det′ subtracts the zero modes, we can write

L= tr
[
log (1l−Q)

]
, Q = O−P0. (5.82)

Note that L has an imaginary part since S ′′ has one negative eigenvalue
λ−. We expand the log as

L=−
∞∑
k=1

1
k

tr
[
Q
k
]
. (5.83)

As we shall see, further simplifications occur in the large-d limit. In this
limit we can approximate Q by Q

var′ given by

Q
var′ = O

var′ −P0
var, (5.84)

where O
var′ defined by (5.76) is the Hessian −E ′′ at the variational inst-

anton, computed in the variational approximation, while P0
var defined by

(5.79) is the projector on the zero-modes of S ′′ in the variational approx-
imation. Therefore we approximate L by

Lvar′ =−
∞∑
k=1

1
k

tr
[(

Q
var′)k]. (5.85)

“Beads” and “Necklace” Diagrammatic Representation. Starting from
(5.77), (5.79) and using the fact that

∫
xGm(x)= 1/m2, we can write the

kernel of Q
var′ as

Q̂
var′
k1,k2
= e−(k2

1+k2
2)Gm(0)/2

∫
x

[
e−k1k2Gm(x)−1+k1k2Gm(x)

]
, (5.86)
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and expanding in k1k2, we get a simple diagrammatic representation for
Q̂

var′
k1,k2

as a sum of “watermelon” diagrams

Q̂
var′
k1,k2
= e−(k2

1+k2
2)Gm(0)/2

∞∑
n=2

(−1)n

n!
(k1k2)

n

∫
x
Gm(x)n

= + + + ...

(5.87)

Each line represents a propagator Gm. No internal M momentum flows in
the diagram, the p’s are external momenta relative to the embedding space
R
d . In this series the term n= 0 is removed by the fact that O is defined

by a connected correlator in (5.60); while the term n=1 is removed by the
projector onto the zero modes P0.

Now we consider the tr[(Qvar′)
k
] in (5.85). Each trace is given by

tr
[(

Q
var′)k]=

∫
ddk1

(2π)d
· · · d

dkk
(2π)d

Q̂
var′
k1,−k2

Q̂
var′
k2,−k3

· · · Q̂var′
kk,−k1

. (5.88)

Thus Lvar′ can be represented as a sum over “necklace” diagrams made
out of the “beads” of (5.87). The integration over the k’s can be done
explicitly and gives a decomposition of the form

tr
[(

Q
var′)k]= ∑

n1,...,nk�2

Pn1,...,nk (d)

k∏
i=1

2m2Gm(0)
Ini

2ni ni !
,

In=
∫

x

[
Gm(x)
Gm(0)

]n
, (5.89)

where Pn1,...,nk (d) is a polynomial in d (the bulk space dimension), with
integer coefficients, given by the average

Pn1,...,nk (d)= (−k1k2)
n1(−k2k3)

n2 · · · (−kkk1)
nk (5.90)

with the normalized Gaussian independent variables ki ∈R
d , i.e. kai kbj =

δabδij . The polynomial P can be computed by Wick’s theorem. Typical
configurations are:
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37335 2 2 6 443

Note that the first and last points are identified. Let us denote by N the
total number of lines N =∑ni in the diagram. From (5.90) the P ’s are
non zero if and only if the ni ’s are either all even, or all odd.

• if k=1 this is always true and Pn(d) is of degree n in d;

• if k > 1 and the ni ’s are even, N � 2k and the degree of P(d) is
N/2�k;

• if k>1 the ni ’s are odd, N�3k and the degree of P(d) is 1+ (N−
k)/2>k.

Large-d Power Counting. We now look at the behavior of these terms
when d→∞, ε fixed. First we rescale everything in units of the variational
mass m,

x→x/m, p→pm
2−D

2 , Gm(x)→m2−DG(x), (5.91)

i.e., we set the variational mass m to unity in our calculations, since the
tr[Qk] are dimensionless quantities. We refer to Appendix G for the details
on this rescaling. Then we note that the propagator G(x) for x �= 0 given
by (4.31) is of order O(1), when d→∞

G(x)= (2π)−D2 |x|(2−D)/2K(D−2)/2(|x|) → 1
2π
K0(|x|) = O(1),

while G(0) is of order O(d) since

G(0)= (4π)−D2 � ( 2−D
2

) → 1
2π

1
2−D �

d

4π(4− ε) = O(d).

Thus the integrals In given by (5.89) are of order d−n

In=
∫

x

[
G(x)
G(0)

]n
=O(d−n)
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and the term associated to the k-bead necklace [n1, n2, . . . , nk] in the
decomposition (5.89) is of order

[n1, n2, . . . , nk] → O
(
ddegree[P ]+k−N

)
,

where N =∑ni .

• If k=1, we have seen that degree[P ]=N , and all the terms are of
order d. Therefore, if the series over the n’s converges (we shall discuss this
later)

tr
[
Q

var′
]
= O(d). (5.92)

• If k > 1 we have seen that there are two cases. For even neck-
laces the ni ’s are all even and degree[P ]=N/2 � k so we obtain a term
of order d k−(N/2)� d0. We note that the most dominant terms are those
with N=2k. These are the [2,2, . . . ,2] necklaces whose beads contain two
links (chains of bubbles).

(5.93)

For odd necklaces, the ni ’s are all odd and degree[P ]= 1+ (N − k)/2>k,
while N �3k. This gives a term of order d 1−(N−k)/2 �d1−k�1. The con-
clusion is that (as long as we can sum the necklace series) the k>1 terms
are of order O(1)

k>1 ⇒ tr
[(

Q
var′)k] =O(1) (5.94)

and that the dominant contribution is given by the chain of bubbles.

Final Result. All the k > 1 terms in (5.89) are subdominant with
respect to the k=1 term. In the large-d limit, L is of order O(d) and can
be approximated by

L = − tr
[
Q

var′
]
+ O(1). (5.95)

We shall check this result with explicit calculations. As we shall see,
the summation of the necklace series is not completely obvious, and is
impaired by the UV divergences of the theory. Let us also note that the
imaginary part which comes from the unstable eigenmode of S ′′ =1l−O is
an effect of order O(1) (since it is associated with one single eigenvalue).
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5.4. Explicit Calculations at Large d

5.4.1. tr
[
Q

var′
]

and its Large-d Limit for ε>0

We first consider the leading term tr
[
Q

var′
]
, given by

tr
[
Q

var′
]
= tr

[
O

var′
]
− d (5.96)

x-Integral Representation. tr
[
O

var′
]

is easily calculated from (5.77) and
(5.88).

tr
[
O

var′
]
=
∫

ddk
(2π)d

O
var′
k,−k =

∫
ddk
(2π)d

e−k2Gm(0)
∫

x

[
ek2Gm(x)−1

]

The k-integration is Gaussian and gives, using the equation for m (5.61)

tr
[
O

var′
]
= 2m2Gm(0)

∫
x

([
1− Gm(x)

Gm(0)

]−(d/2)
−1

)
(5.97)

Since tr
[
O

var′
]

is dimensionless we can set the variational mass m to unity
m= 1, in the r.h.s. of (5.97) (see Appendix G). Using the explicit form
(5.65) for the propagator G(x) and integrating over the x angular variables
via

∫
dDx=SD

∫∞
0 dx xD−1 with x=|x| we obtain

tr
[
O

var′
]
= 22−D � ((2−D)/2)

� (D/2)

∫ ∞
0

dx xD−1

×
([

1−2
[x

2

](2−D)/2 K(D−2)/2(x)

� ((2−D)/2)
]−(d/2)

−1

)
. (5.98)

Let us first consider this integral for finite (but a priori large) d, and study
its convergence.

IR Convergence. At large x the integral is convergent. Indeed the mas-
sive propagator is exponentially decreasing as G(x)� exp(−|x|). For finite
d, and thanks to the −1 that comes from the subtraction of the dis-
connected part, the integrand in (5.97) is also exponentially decreasing at
large x.
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UV Divergences. The small-x behavior of the integral (5.97) has in
fact already been studied in Section(4.3). It was shown that this behav-
ior is governed by the MOPE (4.48) and is related to the UV diver-
gences at one loop of the model. The integrand in (5.98) behaves as∫ ···

0 dx xε−D−1 C0 with C0 given by (4.83). We thus recover the expected UV
divergence at ε�D, which is proportional to the insertion of the opera-
tor 1l. This UV divergence appears in the series representation (5.89) of
tr
[
O

var′
]

as the onset of the nonsumability of the series.5 Indeed, this
series is

tr
[
O

var′
]
=2G(0)

∞∑
n=1

Pn(d)

2nn!
In with Pn=d(d+2) · · · (d+2n−2)

(5.99)

and In=
∫

x[G(x)/G(0)]n∼ n−(D/(2−D)) at large n. It is easy to check that
the series (5.99) behaves as

∑
n n
−1+(d/2)−(D/(2−d)) and is convergent only

if ε >D.
Since the model is defined for ε <D by dimensional regularization,

the analytic continuation of the integral (5.97) is its finite part (in the
sense of distribution theory). Therefore tr

[
O

var′
]

is defined for ε >0 by

tr
[
O

var′
]
= 2G(0) × f.p.

∫
x

([
1− G(x)

G(0)

]−(d/2)
−1

)
(5.100)

or equivalently by the resummation of the series (5.99) by a zeta-function
prescription.

For ε= 0 the integral has another UV divergence, which is canceled
by the (∇r)2 counterterm of the renormalized theory. We shall discuss this
point later.

Large-d Limit. We can now take the limit of (5.99) when

d→∞, ε >0 fixed.

Since in this limit

G(x)→ 1
2π
K0(|x|), G(0)→ 1

4π
d

4− ε

5This non-sumability has of course nothing to do with the large-order behavior we are after.
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we obtain

tr
[
O

var′
]
= d 1

4−ε f.p.
∫ ∞

0
dx x

[
e(4−ε)K0(x)−1

]
+ O(1). (5.101)

From the short distance behavior of the two-dimensional propagator
K0(x)� log(1/x), the last integral is

T1(ε)= f.p.
∫ ∞

0
dx x

[
e(4−ε)K0(x)−1

]
=
∫ ∞

0
dx x

[
e(4−ε)K0(x)−1−x−4+ε

]

and is UV finite for 0< ε < 2. Thus we recover that tr
[
O

var′
]
=O(d) in

this case.
T1(ε) has a single pole at ε=2, as expected. It is UV divergent when

ε→0. This will be studied later.

5.4.2. tr
[(

Q
var′
)2
]

and its Large-d Limit for ε>0

We now perform the same analysis for tr
[
Q

2
]
. We have, using (5.61)

tr
[(

Q
var′
)2
]
=
∫

ddk1

(2π)d
ddk2

(2π)d
Q̂

var′
k1,−k2

Q̂
var′
k2,−k1

=
∫

ddk1

(2π)d
ddk2

(2π)d
e−(k

2
1+k2

2)Gm(0)

×
∫

x1

∫
x2

[
e−k1k2Gm(x1)−1+k1k2Gm(x1)

]

×
[
e−k1k2Gm(x2)−1+k1k2Gm(x2)

]
(5.102)

Setting m=1 and performing the k integrations we get

4G(0)2
∫

x1

∫

x2

⎧⎨
⎩
[

1−
[
G(x1)+G(x2)

2G(0)

]2
]−(d/2)

−
[

1−
[
G(x1)

2G(0)

]2
]−(d/2)

−
[

1−
[
G(x2)

2G(0)

]2
]−(d/2)

+1

− d
G(x1)G(x2)

4G(0)2

⎡
⎣
[

1−
[
G(x1)

2G(0)

]2
]−(d/2)−1

+
[

1−
[
G(x2)

2G(0)

]2
]−(d/2)−1

−1

⎤
⎦
⎫⎬
⎭ .

(5.103)
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This integral is IR and UV finite as long as ε >0. When ε=0 we recover
the UV divergence when both x1 and x2→0.

Now in the large-d limit, ε fixed, since G(0)∼d and G(x)∼1 we can
expand the [· · · ]−d/2 and get

3d(d+2)
16G(0)2

∫
x1

∫
x2

G(x1)
2G(x2)

2+O(d−1) = 3
16
(2D− ε) (2+D− ε)+O(d−1)

≈ 3
(

1− ε
4

)2 + O(d−1). (5.104)

This expansion is not valid for x1 and x2 = 0 when ε = 0 and this gives
the 1/ε UV pole (coupling constant renormalization), but this is an effect
exponentially small in the large-d limit. We have thus checked the fact that

tr
[(

Q
var′
)2
]
=O(1). (5.105)

5.4.3. tr
[(

Q
var′
)k
]

and its Large-d Limit for ε>0

Calculation of higher powers can be done along the same line. We get

tr
[(

Q
var′
)k]=(1− ε

4

)k + O(d−1). (5.106)

6. 1/d CORRECTIONS TO THE LARGE d LIMIT

In this section we study the first 1/d correction to the variational solution,
which was shown to be valid for large d, ε being kept fixed.

6.1. 1/d Diagrammatic

We first recall in this subsection how is constructed and organized
the 1/d expansion, following the ideas of our first paper.(14) We have per-
formed the rescaling (5.91) so that the variational mass m is set to unity.
This rescaling is detailled in Appendix G. We denote by c0 the normalized
tadpole amplitude6 and the integration measure over d-momenta k is now
normalized so that we have

m=1, c0= (4π)−D/2�((2−D)/2)= ,

∫
k
e−k2c0 =2c0 (6.1)

6c0 is denoted C in ref. 14.
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The exact instanton potential is in these units of the form

V inst(r)=2c0

∞∑
n=0

1
2nn!

(−1
2c0

)n
µn :(r2)

n
:, (6.2)

where now the normal products are defined with respect to the unit vari-
ational mass m=1, i.e.

: := : :m=1

and the coefficients µn are of order 1 in the large-d limit, and are found
to be

µn=−1+ δn
d
+O(d−2) (6.3)

in the large-d limit, with δn= δn(D,d) given by a self-consistent equation
that we recall later. We remind the reader that if we set the µn=−1 we
recover the variational instanton V inst

var .

Fig. 5. Self energy (n=0), mass (n=1) and interaction (n�2) vertices and couplings in the
U expansion (the symmetry factors 1/(2nn!) for the vertices are not written).

The perturbative diagrammatics is obtained by writing

V inst(r)= 1
2

r2+U(r) (6.4)

and treating U as a perturbation. The corresponding 2n-vertices and cou-
plings are schematically depicted on Fig. 5. The last line represents the
couplings, which have to be kept at order 1/d. The propagator is the usual
bosonic propagator with unit mass G(x). The one-loop tadpole graph is
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absent since it is subtracted by the normal-product prescription. The exter-
nal r-space indices a=1, . . . , d flow along the closed lines as in a standard
O(n) model. It was shown in ref. 14 that the diagrams can be reorganized

Fig. 6. The chains of bubbles in the large-d expansion.

in a 1/d expansion by summing all the chains of bubbles, as depicted in
Fig. 6. More precisely, the propagator for the chain is given by the geo-
metric series (in Fourier transform w.r.t. x space)

=H(p)=
[

1+µ2
d

4c0
B(p)

]−1

, (6.5)

where p is the D-momentum flowing through the chain, and B(p) the bub-
ble amplitude (one-loop diagram)

= B(p)=
∫

p
eipxG(x)2

= 1
π

arcth
(
p/
√

4+p2
)

p
√

4+p2
= 1
π

arc sinh (p/2)

p
√

4+p2
, when D=2 (6.6)

For zero momentum, we have

B(0)= 2−D
2

c0. (6.7)

In practice we also have to consider the chains with n� 1 or n� 2 bub-
bles. They are depicted as follows, with the associated amplitude H(1)(p)
and H(2)(p)

= + + +· · ·

= H(1)(p)=
[

1+µ2
d

4c0
B(p)

]−1

−1 (6.8)
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= + +· · ·

= H(2)(p)=
[

1+µ2
d

4c0
B(p)

]−1

−1+µ2
d

4c0
B(p).

(6.9)

At the diagrammatic level this reorganisation of perturbation theory is
very similar to what is done in the 1/N expansion for the (linear or non-
linear) sigma models, where the bubble chain is the propagator for an
auxiliary σ field, and the interaction involves only rrσ and σk (k � 3)
terms. The analytic structure of the perturbation theory is nevertheless
quite different, in particular for the UV and IR divergences of the theory,
as already discussed in ref. 14, and as we shall see below.

Fig. 7. The vertices contributing to −V inst(r) and their couplings in the large-d-reorganized
perturbative expansion.

After this resummation the new vertices with their couplings are
depicted in Fig. 7. The crucial point is that in the limit d→∞, ε fixed,
since D→2 the tadpole coefficient c0 diverges as d so that

µ2
d

2c0
→ −8π

(
1− ε

4

)
= O(1) (6.10)

and the bubble propagator H(p) is of order O(1), while the vertices are
of order 1/

√
d, 1/d, etc. It was shown in ref. 14 that only a finite number

of diagrams contribute to a given order in 1/d, and explicit calculations
where done at the first non-trivial order.

With these notations we have found in ref. 14 that at order 1/d the
following diagrams contribute to the expectation value of the exponential
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(or vertex) operator

〈eikr(0)〉V = e−(k
2/2)c0

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −k2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

+ + +

+

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
+ (k2)

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6.11)

The symmetry factors of the diagrams are not written, they are, respec-
tively, 1/2, 1/4, 1/2, 1/4, 1/4 and 1/8 for the diagrams in (6.11). No
r-space indices flow through the unclosed line.7 The first diagram is (tak-
ing into account the couplings and the symmetry factors)

= 1
2
(1+µ1)

∫
x
G(x)2 = 2−D

4
(1+µ1)c0.

Similarly for the last diagram

= 1
8
(−µ2)

2c0

∫
x

∫
y
G(x)2G(y)2H(x−y).

The exact instanton saddle-point equation, which is (once again)

V̂ (k) + 〈eikr(0)〉V = 0 (6.12)

fixes the µn’s. In particular µ1 is given by

7This is different from the following graph considered in ref. 14, whose amplitude differs by
a factor of d.

= d

2
(1+µ1)

∫
x
G(x)2.
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µ1=− 1
d

∫
k

k2 V̂ (k) e−(k
2/2)c0 (6.13)

and using (6.12) and (6.11) at order 1/d we get the equation for µ1 (i.e.
δ1), which reads diagrammatically

+ 2c0

d

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
−k4

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

+ + +

+

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
+k6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=0, (6.14)

where k4 and k6 mean the average value of k4 and k6, respectively, with
the Gaussian weight e−k2c0 . Since

k4= d(d+2)
(2c0)

2
�
(
d

2c0

)2

, k6= d(d+2)(d+4)
(2c0)

3
�
(
d

2c0

)3

(6.15)

are of order O(1) we recover that µ1=−1+O(1/d).

6.2. The Hessian O

We now show how this method to construct a 1/d expansion can be
applied to compute the matrix elements of the Hessian S ′′ and of the asso-
ciated operator O. We start from the expression for O in momentum space

Ôk1k2 =
∫

x

〈
eik1r(o)eik2r(x)

〉conn

V
=
∫

x

〈
eik1r(o)eik2r(x)

〉
V
−
〈
eik1r(o)

〉
V

〈
eik2r(x)

〉
V

(6.16)

and we use our perturbative rules to expand the e.v. 〈· · · 〉V in 1/d.
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6.2.1. O At Order 1

At leading order O(1), we get (5.77) that we can represent as a sum
over diagrams with n�1 propagators between o and x, integrated over x

Ô
(0)
k1k2
=
∫

x
e−(k

2
1+k2

2)c0/2
[
e−k1k2G(x)−1

]

=
∞∑
n=1

e−k2
1c0/2e−k2

2c0/2(ik1 · ik2)
n n lineso x=

∞∑
n=1

xn lineso

(6.17)

where the integration over x and the symmetry factor 1/n! of the graphs
are implicit. We have introduced here an additional diagrammatic nota-
tion, which will be very convenient in the following discussion.

6.2.2. A Diagrammatic Representation for the Vertex V̂ (k)

The circles in the last graph are a symbol for the factors which
depend respectively on k1 and k2 and are attached to the vertices o and
x. More precisely, the circle represents the exponential e−k2c0/2 and each
line entering into the circle represents an additional (multiplicative) factor
ik, with an external space index a carried by the line. Thus the following
picture, a circle with n external lines, represents the factor

k

1

2

n

= e−k2c0/2 (ika1) · · · (ikan). (6.18)

6.2.3. O At Order 1/d

Now we make the perturbative expansion and keep the diagrams
which contribute to O at order O(1/d) only. We find that only (!) 21
different (classes of) diagrams contribute
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Ô
(1)
k1,k2
=

n>0 lines
+

n>0 lines
+

n>0 lines
+

n>0 lines

+
n>0 lines

+
n>0 lines

+
n>0 lines

+
n>0 lines

+
n>0 lines

+
n>0 lines

+
n>0 lines

+
n>0 lines

+
n lines

+
n lines

+
n lines

+
n lines

+
n lines

+
n lines

+
n lines

+
n lines

+
n lines

.

(6.19)

6.2.4. Diagrammatic for the Mass Renormalization and V

Moreover, Eq. (6.14) for the mass renormalization µ1 may be rewritten
at order O(1/d) with our notations as



962 David and Wiese

= + + +O(1/d2). (6.20)

While Eq.(6.11) for V reads

− V̂ (k) = + + + +

+ + +O(1/d2) (6.21)

Note that in Eq. (6.19) the diagrams 1–4, 7–10 and 13–16 can be absorbed
into a mass shift m= 1 → m= 1− in the leading contribution repre-
sented in (6.17). The same mass shift absorbs the diagrams 2–5 in Eq.
(6.21) for V .

6.3. The Zero-mode Projector P0

We now compute the projector onto the zero-modes

P̂0k1k2 =
ik1V̂ (k1) · ik2V̂ (k2)

1
d

∫
k k2V̂ (k)2

(6.22)

6.3.1. P0 At Order 1

We have already seen that at leading order in the 1/d expansion∫
k k2V̂ (k)2=d and since

∫
xG(x)= Ĝ(0)= (1/m2)=1 so that with our dia-

grammatic notations

P̂0
(0)
k1k2
=
∫

x
(−k1k2)e

−k2
1c0/2e−k2

2c0/2G(x)= . (6.23)

Thus the projector P0 subtracts the one-line diagram in O (see Eqs. (5.86)
and (5.87)).
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6.3.2. P0 At Order 1/d

We can now compute explicitely the first correction in 1/d to P0, using
(6.21) for V . It is easy to see that the numerator in (6.22) gives all the dia-
grams 1–12 of (6.19) with n=1 line between the two points o and x.

(−k1 ·k2)V̂ (k1)V̂ (k2) =

+ + +

+ + +

+ + +

+ + + .

(6.24)

The denominator is computed from the explicit form of V given by (6.20)
and (6.21). In fact it is easy to see, using (6.11), that
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1
d

∫
k

k2V̂ (k)2=1−2
δ1

d
+O(1/d2)

=1− − − − +O(1/d2) (6.25)

and since Ĝ(0)= 1 we can write × = , etc. We
obtain that only (!) 16 diagrams contribute to P0; the final result is

P̂0k1k2 = + + +

+ + + +

+ + +

+ + + +

+ + +O(1/d2). (6.26)
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We note that the denominator gives all the one-line reducible diagrams
(with only a single line joining o and x) with a tadpole-like graph attached

to the line. The diagrams , and
although one-line-reducible, are not contained in (6.26).

6.3.3. An All Order Argument Relating P0 with Tadpole Graphs

A simple general argument shows that the denominator in (6.22),
given at first order by the tadpole diagrams depicted in (6.25), is given
at all orders by the tadpole diagrams with two truncated external legs
attached to the same vertex. In diagrammatic language we shall show that

1− − − − · · · = 1
d

∫
k

k2 V̂ (k)2 (6.27)

On the left hand side of (6.27) is nothing but

1− − − −· · ·= 1
d

〈
V ′′
(
r(o)

)〉
V

with V ′′(r)=
∑
a

∂2V (r)
∂ra∂ra

(6.28)

(the two r derivatives pick two legs out of the vertex V (r)). We can rewrite
it as

V ′′
(
r(o)

)=
∫

r
V ′′(r) δ

(
(r− r(o)

)=
∫

k
(−k2) V̂ (k) eikr(o) (6.29)

and using the exact Eq. (6.12) for the instanton potential, we get

〈
V ′′
(
r(o)

)〉
V
=
∫

k
(−k2) V̂ (k)

〈
eikr(o)

〉
V
=
∫

k
k2 V̂ (k)2. (6.30)

Q.E.D.
(6.27) implies that P0 will contain all the tadpole chains with tadpole

graphs attached at the o and x end-points, of the form

P0 = (6.31)
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6.4. Final Result for Q = O−P0

As a consequence the subtracted operator Q=O−P0 is given at order
O(1/d) by the same diagrams as those depicted in Eq. (6.19) for O, with
the simple restriction that the diagrams 1–12 of (6.19) must have at least 2
lines joining the two end-points (n�2), and that the diagrams 13–16 must
have at least one non-dressed line joining the two end-points (n�1), while
for the diagrams 17–21, there is no additional restriction (no constraints
on the number n of simple lines, n� 0). Using Eq. (6.20) for µ1 we can
rewrite it as a sum over only 12 graphs (instead of 21!)

Q̂
(1)
k1,k2
= 2

n>1 lines
+

n>1 lines
+

n>1 lines
+2

n>1 lines

+
n>1 lines

+
n>1 lines

+2
n>0 lines

+
n lines

+
n lines

+
n lines

+
n lines

+
n lines

.

(6.32)

6.5. The Determinant D

We now compute the log of the determinant of instanton fluctuations

L= log(D)= tr log(1l−Q)=−
∞∑
k=1

1
k

tr(Qk). (6.33)

6.5.1. Diagrammatic Representation of the Trace

With our rescalings (see Appendix G) each trace still reads

Tk= tr(Qk)=
∫

k1

· · ·
∫

kk
Q̂k1,−k2Q̂k2,−k3 · · · Q̂kk,−k1 (6.34)
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and with the representation for the kernel Q, we have to compute integrals
over k of the form,

∫
k
e−k2c0(−ika1) · · · (−ikam) (ikb1) · · · (ikbn)

= (−1)((m−n)/2)(2c0)
1−((m+n)/2) ∑

pairing

δ.. · · · δ... (6.35)

Using Wick’s theorem we can represent each term by pairing of lines
between the left Q and the right Q, as already discussed when we intro-
duced the diagrammatic necklace representation for L. This is depicted
below

=m lines entering

{ }
n lines exiting (6.36)

∫
k

= (−1)((m−n)/2)(2c0)
1−((m+n)/2) . (6.37)

For instance for m=n=2

= + + (6.38)

and for m=3, n=1

= + + . (6.39)

The vertical dotted line indicates that no M-momenta p flow through the
vertex, since each Q is attached to a different replica of the manifold M.
With these graphical notations, if we represent the kernel Q by the “bead”

Q = (6.40)

tr[Qk] is represented by the k-bead necklace (with periodic boundary con-
dition between the left and right dashed vertical lines)
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tr[Q] = , tr[Q2] = ,

tr[Qk] = . (6.41)

6.5.2. tr [Q]

We first consider the term k=1. We have already seen that at leading
order in 1/d

tr
[
Q
(0)
]
=
∫

k
Q̂
(0)
k,−k =

∫
k

∫
x
e−k2c0

(
ek2G(x)−1−k2G(x)

)
= O(d)

(6.42)

(Q(0)=O
(0)−P0

(0)). This can be depicted graphically as

tr
[
Q
(0)
]
=

∞∑
n=2

(2c0)
1−n

[

n lines

]

=
∞∑
n=2

(2c0)
1−n

[
+

+
]
+O(1/d) (6.43)

and one checks easily that the first graph is of order O(d), the second and
the third of order O(1), since each closed loop carries a factor of d, and
there are periodic boundary conditions between the left and right vertical
dashed lines.

It is easy to see that the trace of the first order correction is of order
O(1)

tr[Q(1)] = tr
[
O
(1)−P0

(1))] = O(1) (6.44)
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and that at this order it is given by the following 12 diagrams

2
n>1 lines

+
n>1 lines

+ n>1 lines +2
n>1 lines

+
n>1 lines

+ n>1 lines +2 n>0 lines + n lines + n lines

+
n lines

+
n lines

+ n lines (6.45)

This corresponds to a specific, but complicated analytical expression, that
we do not write here.

Finally it is quite easy to check that higher order diagrams that con-
tribute to the term of order O(d−r ) of Q, will contribute to the terms of
order O(d1−r ) of tr[Q].

6.5.3. tr
[
Q

2]

We have seen in Section 5.3 that tr
[
Q

var′2
]

was of order O(1). Since

Q
var′ =Q

(0) we could have expected that the next order correction Q
(1)

would contribute by a term of order O(1/d) to tr[Q2]. We shall see that
this is not exact, but that there are nevertheless a lot of simplifications,
and that a simple subclass of diagrams contributes at order O(1).

In fact there are simply two beads, which contribute at leading order
to tr[Q2]. These are

→ + .

(6.46)
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More precisely, the only two-bead necklaces which are of order O(1) are

+ +

+ + . (6.47)

A careful but not difficult analysis shows that each of these diagrams is of
order O(1), and that all the other possible diagrams are of order O(1/d).

The first diagram contributes by

= 1
2
d2 (2c0)

−2B(0)2=2
[
d

4c0
B(0)

]2

(6.48)

(we have taken into account the different contractions of the vertices of
(6.38) which give this diagram). The four last one give the square of a sin-
gle bead amplitude

[
+

]2

(6.49)

with the single bead amplitude

+ = 1
2c0

(
1
2
d B(0)+ 1

4
d2 1

2c0
B(0)2H(0)

)

= d B(0)
4c0

[
1+ (d B(0)/4c0)

1+µ2(d B(0)/4c0)

]
, (6.50)

where we used (6.5) and (6.6).
We thus see that the chain of bubbles contributes already to tr[Q2] at

the leading order O(1). In the large-d limit, ε being fixed, since µ2→−1
and dB(0)/4c0→1− ε/4 we get

tr[Q2] = 2
(

1− ε
4

)2+
(

4
ε
−1

)2

+ O(1/d). (6.51)
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6.5.4. tr
[
Q

k ], k>2

The same analysis can be done for the general term tr[Qk]. Here also
the only diagrams that contribute to order O(1) are those of (6.46), and
more precisely those with the beads of (6.50). It follows that at leading
order

tr[Qk] =
[

+
]k
=
[

4
ε
−1

]k
+ O(1/d). (6.52)

We shall comment later on the meaning of the pole in 1/ε.

6.5.5. Summation of the log Series

We see that, except for more complicated graphs coming from the k=
1 and k=2 terms, the whole series (6.33) for L= log(D) contains the series
−∑k>1 (1/k)(4/ε− 1)k which can be resummed formally as a logarithm,
so that (the second term compensates for the missing term in the sum giv-
ing the log)

L = −tr
[
Q
(0)+Q

(1)] +
[

4
ε
−1

]
+
[
1− ε

4

]2 + log
[

2− 4
ε

]
+ O(1/d).

(6.53)

This last series is not convergent if ε < 2 and the argument of the loga-
rithm is negative, hence L has an imaginary part ±π .

In fact this is not surprising, and is a feature of the model, since we
have in fact recovered the unstable eigenvalue λmin= 1−λ− of S ′′ of the
Hessian S ′′, which indeed gives an imaginary part ±π to L. We show this
fact in the next section.

6.6. The Unstable Mode

It was shown in ref. 14 and in Section 3.3.2 by general arguments that
as long as 0 � ε <D the Hessian S ′′[V inst] has one single negative eigen-
value λmin<0, corresponding to the mode of unstable fluctuations around
the instanton configuration.

In Appendix F we derive a variational estimate for an upper bound
for this λmin. This estimates is given by Eq. (F16) and becomes in the
large-d limit
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λvar
min =

−2ε(D− ε)
(2−D)(2D− ε)+ ε2

→ 2− 4
ε
, when D→2, ε fixed.

(6.54)

This is precisely the argument of the log in (6.53).
Here we show that this is not a coincidence, and that the variational

bound λvar
min is saturated in the limit d→∞, ε finite, so that the infinite

series of necklace diagrams, with beads made themselves out of chains
of bubbles of (6.50), reconstructs precisely the logarithm of the unstable
eigenvalue log(λmin).

λmin = 2− 4
ε
, when d→∞, ε fixed. (6.55)

To obtain this result, we shall simply take the following ansatz �− for the
unstable eigenmode

�̂−(k) = 1
2

k2 e−k2c0/2 (6.56)

and show that at leading order

(1l−Q)�− = (2−4/ε)�− + O(1/d). (6.57)

Let us first compute Q
(0)�−

Q̂
(0)�̂−(k1) =

∫
k2

Q̂
(0)
k1,−k2

�̂−(k2)

= 1
2
e−k2

1c0/2
∫

k2

e−k2
2c0k2

2

∫
x

[
e−k1k2G(x)−1+k1k2G(x)

]

=1
2

2c0e
−k2

1c0/2
∫

x

(
e(k

2
1/4)(G(x)

2/c0)

(
k2

1

4
G(x)2

c2
0

+ d

2c0

)
− d

2c0

)
.

(6.58)

In the limit d→∞ since c0∼d the dominant term is

1
2
d

4c0
k2

1 e
−k2

1c0/2
∫

x
G(x)2 � d

4c0

1
4π

�̂−(k1) =
(

1− ε
4

)
�̂−(k1).

(6.59)
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Note that we may represent graphically �̂− and Q̂�̂− by

�̂− = , Q̂�̂− = (6.60)

(where the little handle represents δab) and that the dominant contribution
(6.59) at large d corresponds simply to the diagram

Q
(0) �− � = B(0) 1

2c0

d

2
�−. (6.61)

Note that the rightmost little loop is just =d/2.
We can now compute in the large-d limit the contribution of Q

(1)�−.
It is given a priori by all the diagrams of (6.19) inserted into (6.60). How-
ever a careful but easy analysis shows that the only diagram which con-
tributes finally at leading order O(1) is the chain of bubbles, that appears
already in (6.50)

Q
(1)�− � = B(0)H(0)

−µ2

2c0

d

2
B(0)

1
2c0

d

2
�−

= 4
ε

(
1− ε

4

)2
�− when d→∞. (6.62)

Now if we consider the graphs that appear in the higher-order terms
Q
(r) of the 1/d expansion of Q, one can see that when applied to �− they

also give only terms of order at most O(1/d). Hence we have

Q�− = Q
(0)�−+Q

(1)�−+O(1/d) (6.63)

and combining (6.59) and (6.62) we obtain (6.57). Q.E.D.

6.7. The Zero-mode Measure

Finally, we have to compute the 1/d correction to the weight W for
the collective-coordinate measure for the instanton. According to (3.55),
this weight is given by

W = gd/D
[

1
2π d

∫
r
(∇V )2

]d/2
= gd/D

[
1

2π d

∫
k

k2V̂ (k)2
]d/2

(6.64)
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and using the explicit form for V , and in particular (6.25) we get (for D→
2)

W =
[ g

2π

]d/2
g((4−ε)/2) e−δ1(ε)

(
1+O(1/d)), (6.65)

where δ1(ε) is the coefficient for the mass correction at order 1/d defined
by (6.3). δ1(ε) is of order O(1) in the large-d limit, its exact value is given
by the self-consistent equations (6.13)–(6.20). The large-d limit for δ1(ε)

was already obtained in ref. 14. It is given by the integral

δ1(ε)= 1
4− ε

∫ ∞
0
dp p

[
− log

[
1−

[
1− ε

4

]
J (p)

]
−
[
1− ε

4

]
J (p)

]
,

J (p)= 2 arc sinh(p/2)

p
√

1+p2/4
, (6.66)

which is convergent as long as ε >0.

7. THE LIMIT ε=0 AND THE RENORMALIZED THEORY

We are interested in the renormalized theory in which the UV diver-
gences have been subtracted and the limit ε→0 has been taken. We have
already discussed in Section 4 the UV divergences and how they are ren-
ormalized. Here we discuss this limit in more detail and its interplay with
the large-d limit. Our main result is that the 1/d expansion is plagued by
IR divergences when ε=0, so that the limits d→∞ and ε→0 do not sim-
ply commute. As we shall see in our discussion, this does not mean that
our instanton calculus does not make sense at ε=0, but rather that when
ε = 0 the large-d limit is of a different nature and contains non-analytic
terms in d such as logarithms of d.

7.1. Minimal Subtraction Schemes

To study the renormalized theory at a given dimension d we must
first specify a renormalization scheme. We shall use the minimal subtrac-
tion scheme (MS) such that the field and coupling-constant counterterms
in the original action subtract the poles at ε = 0 (see Eqs. (4.89)–(4.90)).
In fact the definition of a MS scheme requires some care. Indeed, since
ε = 2D − d(2−D)/2 depends both on D and d (the manifold and bulk
space dimensions) the limit ε→ 0 to construct the renormalized theory
of a D-manifold in d = dc(D)= 4D/(2−D) dimension can be taken in
different ways. These different limits correspond to different renormalized
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theories which differ by a finite renormalization of the field and the cou-
pling constant, i.e. these limits correspond to different renormalization
schemes.

7.1.1. Definition of the MS-D and MS-d Schemes

1. MS-D scheme: A first scheme is to work at fixed manifold dimen-
sion D=Dc and to take the limit d→ dc(Dc)= 4Dc/(2−Dc). Then ε =
(dc − d)(2−Dc)/2. This allows direct comparison with the field theoreti-
cal calculations for SAW one has polymers, since for Dc= 1 and ε= ε/2,
where ε=4−d is the parameter of the standard Wilson–Fisher expansion.

2. MS-d scheme: Another scheme, more natural for 2-dimensional
manifolds (D= 2), is to fix d= dc and to take the limit ε→ 0 by varying
D. In this case ε= (2+dc/2)(D−Dc) with Dc=Dc(dc)=2dc/(4+dc).

7.1.2. Relation between the Schemes

In both schemes we take as counterterms

Z(br)=1−br
C1(Dc, dc)

ε
, Zb(br)=1+br

1
2

C2(Dc, dc)

ε
(7.1)

and the relation between the bare fields r and coupling constant b and
renormalized ones rr and br is

r=Z1/2rr, b=brµ
εZbZ

d/2. (7.2)

We see that both ε and d appear explicitly in the second relation for b. At
one loop it gives

b=µεbr

[
1+br

1
2

C2−dC1

ε
+· · ·

]
. (7.3)

In the MS-d scheme the last term gives

C2−dC1=C2(Dc, dc)−dcC1(Dc, dc), (7.4)

while in the MS-D scheme it gives

C2−dC1=C2(Dc, dc)−dcC1(Dc, dc)+ ε 2C1(Dc, dc)

2−Dc . (7.5)
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We see that renormalization in the MS-D and the MS-d schemes with
the same subtraction mass scale µ amounts to a finite coupling-constant
renormalization

bMS−d=bMS−D+b2
MS−D

C1

2−Dc (7.6)

or equivalently that the MS-d subtraction scale µMS−d and the MS-D sub-
traction scale µMS−D are related by

log
[
µMS−d

µMS−D

]
= 2

2−D
C1

C2−dC1
. (7.7)

Let us also note that we recover the combination of counterterms C2 −
dC1 that appears in the result (4.112) for the coefficient B (defined by
Eq. (4.110)) of the UV pole in 1/ε for the effective action S[V ] (see
Eq. (4.104)) and for L= tr log S ′′[V ].

7.2. Variational Mass Subtraction Scale

Now for simplicity and in order to study more easily the large-d
limit of the renormalized theory we shall work with the normalizations
of Appendix G, where x and r are rescaled as x→mvarx, r→mvar

(2−D)/2
and the coupling constant b is redefined by b→mvar

ε−Db so that the var-
iational mass is now set to unity (mvar = 1) in all the calculations. Since
the rescaling of the coupling constant amounts to g→mvar

−Dg, this last
rescaling amounts to choosing as subtraction scale a multiple of the vari-
ational mass (µ→µmvar) in the renormalized theory.

In this normalization the field and coupling-constant counterterms (as
defined in (4.91)) C1=C1(Dc, dc) and C2=C2(Dc, dc) in the action become
(see Appendix G and in particular Eqs. (G30) and (G31))

C1= −SD
2D

[
c0

d0

]1+(d/2)
, C2=

2S2
D

(2−D)2
�[D/(2−D)]2
�[2D/(2−D)]

[
c0

d0

]1+(d/2)
.

(7.8)

The logarithm of the renormalized instanton determinant Lr is still given
by (4.108)

Lr=L+
(
g

1
D
r µL

)−ε [C1

ε
〈(∇r)2〉V + C2

2ε

∫
r
V (r)2

]
. (7.9)
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We have seen that in the large-d limit (ε fixed), the first counterterm is
of order one C1=O(1) while the second one is exponentially small, C2∼
O(exp(−d)). For our discussion of the variational approximation and of
the large-d limit we only have to consider the wave-function counterterm
C1=C1(D, dc(D))=C1(Dc(d), d) which is given explicitly when ε=0 by

C1 = − 4
D

(4π)D/2

�[D/2]

[
�[(2−D)/2]
−�[(D−2)/2]

](2+D)/(2−D)

= − 4
d

(4π)(2d/(4+d))

�[d/(4+d)]2
[−�[−4/(4+d)]

�[4/(4+d)]
]−(d/2)

(7.10)

7.3. Renormalized Theory in the Variational Approximation

for Finite d

We first consider the renormalized instanton determinant in the varia-
tional approximation, but for finite embedding space dimension d, follow-
ing the lines of Section 5.4. We thus approximate L= log det′[S ′′] by L(0)=
−tr

[
Q
(0)
]

(as defined by Eq. (6.42)). This gives, after integration over k
and using (G11),

L(0) = −tr
[
Q
(0)
]
=−

∫
k
e−k2c0

∫
x

[
ek2G(x)−1−k2G(x)

]

= d−2c0

∫
x

([
1− G(x)

c0

]−(d/2)
−1

)
. (7.11)

To renormalize consistently L we must take for the condensate 〈(∇r)2〉V in
the counterterm in (7.9) its value in the variational approximation

〈(∇r)2〉V → 〈(∇r)2〉m=1 = d

∫
p

p2

p2+1
= −dc0 (7.12)

(we use dimensional regularization), and neglect the coupling-constant
counterterm C2, since there is no coupling-constant renormalization in the
variational approximation. Thus we obtain for the renormalized log in the
MS-D scheme

L(0)ren = lim
ε→0,D fixed

[
L(0)−dc0

(
g

1
D
r µL

)−ε C1(D)

ε

]

= −Bvar

[
1
D

log(gr)+ log(µL)
]
+L

(0)
MS−D (7.13)
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with

Bvar=−dc(D)C1(D)c0(D)= 32
(2−D)2

[
�[(2−D)/2]
−�[(D−2)/2]

](4/(2−D))
(7.14)

and

L
(0)
MS−D = lim

ε→0,D fixed

[
L(0)−dc0

C1(D)

ε

]
. (7.15)

Integrating over the angular degrees of freedom of x we can rewrite L(0)

as

L(0)=d−2c0(D)SD I,

I= f.p.
∫ ∞

0
dx xD−1

([
1− G(x)

c0

]−(d/2)
−1

)
, (7.16)

where the finite part prescription “f.p.” deals with the short-distance diver-
gence at x=0 still present when ε>0. The UV divergence of I comes from
the short-distance behavior of the propagator G(x), obtained from (4.33)

G(x)= c0−d0 x
2−D+ c0

2D
x2− d0

2(4−D) x
4−D+O(x4). (7.17)

This implies that the integrand in I behaves at small x as

I�
∫ ···

0
dx

[
c0

d0

](d/2) [
xε−D−1+ d

4D
c0

d0
xε−1− d

4(4−D)x
ε+1−D+O(xε+1)

]
.

(7.18)

The first term gives the UV pole at ε=D, which is subtracted by dimen-
sional regularization, and is dealt with by the f.p. prescription. The second
term gives the UV pole at ε= 0. The third one gives a non-singular pole
at ε=D− 2, but will be important in the large-d limit. Now we use the
explicit result (7.8) for C1, which implies that we can rewrite the counter-
term in (7.15) as

dc0
C1(D)

ε
=−2c0SD

[
c0

d0

]1+(dc(D)/2) d
4D

∫ 1

0
dx xε−1. (7.19)
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Thus this counterterm cancels the pole at ε= 0, but we must notice that
since we use the MS-D scheme, there is a slight difference between the
coefficient of the xε−1 term in (7.18) and (7.19): the first one contains
[c0/d0]1+d/2 and the second one [c0/d0]1+dc(D)/2. Since d=dc(D)−2ε/(2−
D) this gives a difference of order O(ε) for the residue of the poles at
ε=0, hence a term of order O(1) in the limit ε→0. We carefully rewrite
the expression (7.15) for L

(0)
MS−D as

L
(0)
MS−D= lim

ε→0,D fixed

{
d+dc0

4D

[
c0

d0

](2+D)/(2−D)1
ε

[
1−
[
c0

d0

](−ε/(2−D))]
−2c0SD I′

}

I′ =
∫ ∞

0
dx

[
xD−1

[[
1− G(x)

c0

]−(d/2)
−1

]
−
[
c0

d0

](d/2)
xε−D−1

− d

4D

[
c0

d0

]1+(d/2)
xε−1θ(1−x)

]
(7.20)

θ(1−x)=1 if x<1, 0 if x>1 is the Heaviside step function. This integral
representation is a priori valid for ε >0 but is now convergent if we take
the limit ε→0. We can interchange this limit and the small x integration
and obtain, using dc(D)=4D/(2−D) and SD=1/(2−D)d0,

L
(0)
MS−D=d+

c0

(2−D)2
[
c0

d0

]((2+D)/(2−D))
log

[
c0

d0

]
− 2

2−D
c0

d0
I′

I′ =
∫ ∞

0
dx

[
xD−1

[[
1− G(x)

c0

]−(2D/(2−D))
−1

]
−
[
c0

d0

](2D/(2−D))
x−D−1

− 1
2−D

[
c0

d0

]((2+D)/(2−D))
x−1θ(1−x)

]
(7.21)

This last integral over x is UV and IR convergent as long as D<2. It can
be computed numerically.

For D = 1 we have c0 = 1/2, d0 = 1/2 and G(x) = e−|x|/2, and we
obtain

L = 4−2I′,

I′ =
∫ ∞

0
dx

[[
1− e−x ]

]−2−1−x−2−x−1θ(1−x)
]
= ζ(0)=−1

2
.

(7.22)
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Table I. Numerical estimates of �(0)
MS−D

(d ) for various values of d

d 0 2 4 6 8 10 12 14 16 20

L(0)
MS−D 2 4.01 5 6.60 9.16 13.0 18.5 25.9 35.6 62.7

Details of the calculation: We compute the integral

L=4−2I′, I′ =
∫ ∞

0
dx

[[
1− e−x ]

]−2−1−x−2−x−1θ(1−x)
]
.

First we put a regulator ε, and notice that the last term is here to subtract
the pole in ε

I′ = lim
ε→0

J(ε)− 1
ε
, J(ε)= f .p.

∫ ∞
0

dx xε
[[

1− e−x ]
]−2−1

]
.

Now

J(ε) =
∞∑
n=1

(n+1)
∫ ∞

0
dx xε e−nx =

∞∑
n=1

(n+1)�(ε+1) n−ε−1

= �(ε+1)
(
ζ(ε)+ ζ(ε+1)

)
.

Now we use

ζ(0)=−1
2
, ζ(1+ ε)= 1

ε
+γE+O(ε), �(1+ ε)=1−γEε+O(ε2)

and obtain

J(ε)= 1
ε
− 1

2
+O(ε) hence I =−1

2
.

For D �= 1 this integral representation allows easy numerical integra-
tion. This gives the following results, presented on Table I and Fig. 8.
Finally, we see on the numerical results that L

(0)
MS−D diverges when d→∞

(i.e. when D→2). As we shall see later, it behaves as
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2 4 6 8 10 12 14 16
d

5

10

15

20
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35

40
L

Fig. 8. L=L(0)
MS−D as a function of the external dimension d.

L
(0)
MS−D �

(
2eγE

)−4
d3 (7.23)

and this asymptotic behavior is reached as soon as d � 20, as shown on
Fig. 9.
Details of the calculation: To compute the integral I′ numerically, it is
more convenient to separate the integral over x ∈]0,1] and over x ∈ [1,∞[

I′ =I′1+I′2, I′1=
∫ 1

0
dx [· · · ] , I′2=

∫ ∞
1

dx [· · · ] . (7.24)

For the second one we can integrate directly the first term, and explicitly
the counterterms and get

I′2 = −
1
D

[
c0

d0

](2D/(2−D))
+I′′2,

I′′2 =
∫ ∞

1
dx xD−1

[[
1− G(x)

c0

]−(2D/(2−D))
−1

]
. (7.25)
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1 2 3 4 5
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6

8

10

Fig. 9. L(0)(d) (black curve) in Log–Log coordinates compared to its large-d asymptotics
(grey curve, straight line).

For the first one it is better to over-subtract it, in order to improve the
integration at x=0 and the study of the large-d limit, and write

I′1=−
1
D
− D

(2−D)2(4−D)
[
c0

d0

](2D/(2−D))
+I′′1 (7.26)

I′′1 =
∫ 1

0
dx
[
xD−1

[
1− G(x)

c0

]−(2D/(2−D))−[ c0

d0

](2D/(2−D))
x−D−1

− 1
2−D

[ c0

d0

]((2+D)/(2−D))
x−1

+ D

(2−D)(4−D)
[ c0

d0

](2D/(2−D))
x1−D

]
. (7.27)

Both integrals I′′1 and I′′2 are convergent for any D<2 and have a smooth
limit when D→2.
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7.4. Do the Limit d →∞ and the Limit ε→0 Commute?

7.4.1. An Apparent Paradox

For ε > 0 the variational approximation L(0) for L has a regular
large-d limit. We have studied it already in Section 5.4.2. It is of order
O(d) and is given by the convergent integral

L(0)=d
(

1− 1
4− ε f.p.

∫ ∞
0

dx x
[
e(4−ε)K0(x)−1

])
, (7.28)

which is the large-d limit of the integral (7.16) (K0(x) is the Modified
Bessel function of the 2nd kind).

This integral can be computed numerically. To study its UV structure,
we use the small x expansion for the 2D propagator

K0(x) = − log(x/2)−γE+ 1
4
x2 (− log(x/2)+1−γE)+O(x4). (7.29)

The integrand in (7.29) behaves at small x as

[eγE/2]ε−4
(
xε−3+ 4− ε

4
xε−1 (− log(x/2)−γE+1)+O(x1+ε log x)

)
−1.

(7.30)

The first term xε−3 gives the UV pole at ε=2, and is subtracted by the f.p.
prescription. The second term xε−1 gives the poles at ε= 0 but the log x
gives in fact a double pole, so that

L(0) � −d 4e−4γE

(
1
ε2
+ 3

4 ε
+O(1)

)
. (7.31)

There seems to be a discrepancy between this calculation and the results
of the previous section:

• Here we take the limit d→∞, then ε→0; L(0) has a UV pole ∝
d/ε2.

• Previously we took the limit ε→ 0, then d→∞; L(0) has a UV
pole ∝d2/ε.

Clearly the limits ε →0 and d→∞ do not simply commute.
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7.4.2. Resolution of the Paradox

This apparent paradox can be understood if we use the results of the
previous section to study carefully how the bare quantity L(0)=d− tr[O(0)]
behaves when both ε→ 0 and d→∞. L(0) is given by (7.16) and in that
limit the dominant contribution is the integral I, and more precisely the
terms of order x−1 when x→0 in the integral (7.18) for I. There are two
such terms, the dominant one of order xε−1 (which will give the UV pole
at ε = 0), and the subdominant one of order xε+1−D. These two terms
combine so that in the large-d, small-ε limit, we have

L(0) � − d
2

ε
+ d2

ε+2−D with ε=2D− d
2
(2−D). (7.32)

If we take the limit ε→0 with d finite and large (hence 2−D small
but non-zero) the first term is singular, and we recover the standard sin-
gle UV pole, while the second one stays finite. Renormalization within the
MS-scheme amounts to subtracting the first term and we recover

L
(0)
MS-D �

d2

2−D =
d3

4D
. (7.33)

All the other terms contributing to L
(0)
ren are at most of order d2. Thus we

recover the fact that the renormalized L is of order O(d3).
If we now take the limit d→∞ with ε non-zero but small, we rewrite

(7.32) as

L(0) � − d2(2−D)
ε(ε+2−D) = −

2d(2D− ε)
ε(ε+2−D) � −

8d
ε2

(7.34)

and we recover the fact that the bare L is of order O(d) but with a double
pole when ε→0. Thus (7.32) contains both (7.33) and (7.34).

7.4.3. Discussion

Of course in the full theory, it is the first limit (ε→ 0 then d→∞)
which must be considered to study the large-d behavior of the renormalized
theory. At the level of the variational approximation framework, from the
previous calculations one can show that at large-d the variational renormal-
ized log det L

(0)
MS-D has a regular large-d asymptotic expansion in powers of

1/d,

L
(0)
MS-D = l00 d

3+ l01 d
2 + l02 d + l03 d

0 + · · · (7.35)

with the l0n’s real and finite.
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Indeed, setting ε=0, starting from (7.21), using Eqs. (7.24)–(7.27) and
the fact that c0/d0 is analytic in 1/d (c0/d0=1+O(1/d)), one sees that the
only possible non-analytic terms are the integrals I′′1 and I′′2. Now the mass
=1 propagator G(x) is analytic in 1/d∼2−D, except at x=0, where it has
a log(x) singularity when D=2. At x=∞ it behaves as exp(−x) for any D
and it is then easy to see that I′′2 is analytic in 1/d. The integral I′′1 given by
(7.27) behaves at D=2 as

∫
0 dx x log x and its nth derivative with respects to

D behaves as
∫

0 dx x logn x and is convergent for any n. Hence we deduce
that I′′1 too has an (asymptotic) expansion in 2−D∼1/d. Q.E.D.

Thus the variational renormalized theory at ε=0 scales with d as d3

(and not as d), but still is amenable by a 1/d expansion. As we shall see
in the next section, the situation becomes more complicated when we deal
with the corrections to the variational approximation. Indeed, the pertur-
bative expansion studied in Section 6 is plagued with IR divergences at ε=
0, in addition to the UV divergences, and we shall argue that this means
that the renormalized theory contains non-analytic terms such as log(d)’s
in the large-d limit.

7.5. Renormalized Theory: First 1/d Correction and IR Divergences

7.5.1. The IR Divergences at ε=0

In Section 6 we have isolated the classes of diagrams in the expansion
of the kernel Q which give a contribution of order O(1) in L= tr log[1l−
Q]. This analysis is valid provided that ε >0. Indeed, as long as ε >0 the
individual diagrams are IR and UV convergent, and the summation over
the diagrams in each class in also convergent.

If we now take the limit ε→ 0, IR problems may occur when sum-
ming these diagrams.

First we consider the diagrams that contribute to tr[Q(1)], depicted in
(6.45). In each of the 11 classes of diagrams in (6.45) the sum over the n
lines joining the left to the right contributes to a similar sum as the sum
considered in Section 5.4.1 at leading order, i.e. to integrals of the form

∫
x

∫
k

(
e−k2(c0−G(x))− e−k2(c0)

)
×· · · � 2c0

∫
x

(
[1−G(x)/c0]−d/2−1

)
×· · ·

These integrals are UV and IR finite when ε > 0 (with a finite-part pre-
scription to deal with the singularity at x= 0). When ε= 0 they are still
IR finite (the x-integration is convergent at |x|→∞ since the propagator
G(x) is massive, hence exponentially decaying at large distance). On the
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other hand, these integrals are UV divergent when ε = 0 (there is a sin-
gularity at x= 0, which gives a 1/ε UV pole) but this divergence is dealt
by the renormalization procedure.

Now the second infinite sum in the 11 classes of (6.45) is given by the
“chain-of-bubbles” propagator of the 1/d expansion

H(p) =
= 1+ + + +· · ·

given by (6.5) and depicted in Fig. 6. Combining the results of section 6.1,
in particular (6.5), (6.6) and (6.10), we easily obtain that in the limit d→
∞, ε finite, this propagator is

H(p)=
[
1−

(
1− ε

4

)
J (p)

]−1
with J (p)= 2

p

arc sinh(p/2)√
1+p2/4

=π B(p)
(7.36)

(we use the notations of ref. 14 for J (p), B(p) is the bubble amplitude
(6.6) at D=2). For large p the UV behavior of H is

H(p) � 1+ (4− ε) logp
p2
+· · · as p→∞ (7.37)

and does not raise additional UV problems. For small p its IR behavior
is

H(p) � 1
p2/6+ ε/4 as p→0. (7.38)

As long as ε > 0, the IR behavior of H is that of a massive scalar field
with effective mass

meff=
√

3ε/2, (7.39)

to be compared with the variational mass mvar=1. However, when ε=0,
this propagator becomes massless meff=0 and since we are dealing with an
effective theory in two dimensions (D= 2), IR divergences occur! Indeed,
in the diagrams of (6.45) there are two sources of IR divergences:
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1. First, the mass shift depicted by is given by the solution of
(6.20) which involves tadpole diagrams with the propagator H(p) at zero
momentum p=0, which gives potential powerlike IR divergences ∝H(0)
since

H(0)= 4
ε
.

2. Second, both the tadpole diagrams on the right hand side of
(6.20) and the other diagrams in (6.45) contain internal loops with the
propagator H(p). Integration over the internal loop momentum gives log-
arithmic IR divergences since∫

p
H(p) = 3

2π
log(1/ε) + · · ·

If we now consider the diagrams which contribute to tr[Q(k)], k �
2, depicted in (6.47), they also contain the zero-momentum propagator
H(0)= 4/ε. Their amplitudes at large d are given by (6.52) and have a
powerlike IR divergence in 1/εk.

This IR problem was in fact first discovered by the authors in ref.
14, and its significance for the calculation of the instanton action studied.
It was shown in ref. 14 that these IR divergences exist for the instanton
profile V (r), but cancel in the first 1/d correction to the instanton action
Sinst. As we shall see now, some partial cancellations of IR divergences
also occur in the contributions of the fluctuations around the instanton,
but the first 1/d correction L

(1)
ren to the renormalized fluctuation contribu-

tion Lren is still IR divergent at ε=0.

7.5.2. Cancellation of IR Divergences in the Mass Shift δ1

We first look at the mass shift δ1 depicted by and solution of (6.20).
We have already computed δ1 in ref. 14 and δ1 is in fact IR finite when
ε→ 0. We refer to section. 6.5 and Appendix B of ref. 14 for the details
of the calculation, the final result being given by Eqs. (135), (137) & (138)
of ref. 14, i.e. the integral

δ1 = 4− ε
2− ε 2π

∫
p

(
− log [H(p)]−

(
1− ε

4

)
J (p)

)

= 4− ε
2− ε

∫ ∞
0

dpp
(
− log

[
1−

(
1− ε

4

)
J (p)

]
−
(

1− ε
4

)
J (p)

)

= 4− ε
2− ε

∫ ∞
0

dv sinh v
(
− log

[
1−

(
1− ε

4

) v

sinh v

]
−
(

1− ε
4

) v

sinh v

)

= 7.5583 . . . for ε=0. (7.40)
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This integral is IR and UV convergent even for ε= 0, since it behaves at
small p as

∫
p 1 and at large p as

∫
p p−4 log2(p).

To prove the IR finiteness of δ1 it is sufficient to rewrite (6.20) as

= + + =

⎡
⎢⎢⎢⎣ + +

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣ × + +

⎤
⎥⎥⎥⎦ . (7.41)

Since no momentum flows through the first (vertical) H line we have

= 1
2c0

4
ε

, while = d

2
B(0) = d

2
1

4π

is finite, and the last two diagrams contain log(ε) IR divergences. How-
ever, one can easily check that these IR divergences cancel. Indeed the
coefficient of the log is obtained by using that as long as

∫
p f (p) is not

itself IR-divergent,

∫
p

f (p) =
∫

p
H(p)×f (0)+ infrared convergent terms

= 3
2π

ln(1/ε)f (0)+ infrared convergent terms.

(7.42)

This means that any H line is to be replaced by (3/2π) log(1/ε)
and treated as if no momentum flows through it. We thus obtain

= 3
2π

log(1/ε)
1

2c0
+ O(1) with = d

2
1

8π
,

while for the second graph

= − 3
2π

log(1/ε)
1
2
+ O(1).
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The coefficient of the log(1/ε) IR divergences is therefore zero, since

+ = 3
2π

log(1/ε)
(
d

4c0

1
8π
− 1

2

)
� − 3

16π
ε log(1/ε).

Thus Eq. (7.41) for δ1 is of the form

δ1 = 1
ε

[δ1+O(1)]⇒ δ1 = O(1), when ε=0. (7.43)

7.5.3. IR Divergences in Q
(1)

We now perform the same analysis for the first 1/d correction to the
Hessian Q, Q

(1), calculated in Section 6. The Fourier transform of Q
(1) is

given by the graphs of (6.32). For reasons that will become clear later, let
us separate Q

(1) into four parts

Q̂
(1) = Q̂

(1a)+ Q̂
(1b)+ Q̂

(1c)+ Q̂
(1d), (7.44)

where Q̂
(1a) is the sum of the graphs which contain the mass shift

Q̂
(1a) = 2

n>1 lines
+2

n>1 lines
+2

n>0 lines
, (7.45)

where Q̂
(1b) is the sum of the graphs which are “really irreducible”

Q̂
(1b) =

n>1 lines
+

n>1 lines
+

n>1 lines
+

n>1 lines

+
n>0 lines

+
n lines

+
n>1 lines

+
n>0 lines

+
n>0 lines

(7.46)

Q̂
(1c) is the sum of the four graphs

Q̂
(1c) = + + +

(7.47)
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and Q̂
(1d) is the single remaining graph.

Q̂
(1d) = . (7.48)

Q̂
(1a) is IR finite since the mass shift is IR finite.

Q̂
(1a) = O(1). (7.49)

Q̂
(1b) and Q̂

(1c) have a logarithmic IR divergence in log(1/ε). By the same
argument as above, the coefficient of the IR divergence is obtained by
removing the H propagator in the graph, so that

Q̂
(1b) = 1

2c0

3
2π

log(1/ε) D̂(1b) + O(1) (7.50)

with

D̂
(1b) =

n>1 lines
+

n>1 lines
+

n>1 lines
+

n>1 lines

+
n>0 lines

+
n lines

+
n>1 lines

+
n>0 lines

+
n>0 lines

. (7.51)

Similarly for Q̂
(1c) we have

Q̂
(1c) = 1

2c0

3
2π

log(1/ε) D̂(1c) + O(1) (7.52)

with

D̂
(1c) = + + + .

(7.53)

Finally Q̂
(1d) has an IR pole in 1/ε, since the bubble propagator carries

zero momentum,

Q̂
(1d) = O(1/ε). (7.54)
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7.5.4. Partial IR Cancellations in tr[Q(1)]

Now come the IR cancellations in tr[Q(1)]. We first consider the sec-
ond term. We notice that the diagrams in (7.51), which contribute in D̂

(1b),
are obtained by two mass insertions in the diagrams which contribute to
Q̂
(0),

Q̂
(0) = n>1 lines (7.55)

and more explicitly, since a mass insertion corresponds to (minus) a deriv-
ative with respect to m2 (where m is the variational mass in the propaga-
tors)

D̂
(1b)
k1,k2
= 1

2
∂2

∂(m2)
2

(∫
x

〈
eik1r(o)eik2r(x)

〉conn

m
−d

)∣∣∣∣∣
m=1

= 1
2

∂2

∂(m2)
2

Q̂
(0)
k1,k2

∣∣∣∣∣
m=1

.

(7.56)

The effect of the derivative on the propagators from o to x is easy to
understand. The tadpoles with one or two mass insertions are generated
by the derivative acting on the circle (6.18) at o or x.

The kernel D̂
(1b) is clearly non-zero, but it is traceless for ε = 0.

Indeed,

tr
[
D̂
(1b)

]
= 1

2
∂2

∂(m2)
2

tr
[
Q
(0)
]∣∣∣∣∣
m=1

(7.57)

and tr
[
Q
(0)
]

scales with the mass m like

tr
[
Q
(0)
]
= mD−ε tr

[
Q
(0)
]∣∣∣
m=1

. (7.58)

Therefore, since in the large-d limit, D=2, we have

tr
[
D
(1b)

]
= −ε(2− ε)

8
tr
[
Q
(0)
]

(7.59)

and formally8 tr
[
D
(1b)

]=0 when ε=0.

8One must be cautious since tr
[
Q
(0)
]

has an UV pole at ε = 0, so there is a mixture of IR
and UV singularities, that we shall discuss later.
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Similarly we can compute the IR coefficient D̂
(1c) for the third term

and its trace. We obtain easily the explicit result

tr
[
D
(1c)] = 4π c0 ε

2(1− ε/4) = d ε2/4. (7.60)

It is also zero when ε→0.
Details of the calculation: We have

= 1
4

(
1

4π

)2

(−k2
1)(−k2

2)(−k1k2) e
−(k2

1+k2
2)c0/2

= 1
2

(
1

4π

)
(−k2

1)(−k1k2) e
−(k2

1+k2
2)c0/2

= 1
2

(
1

4π

)
(−k2

2)(−k1k2) e
−(k2

1+k2
2)c0/2

= (−k1k2) e
−(k2

1+k2
2)c0/2

We integrate over k1=−k2 to obtain the trace and we use the fact that

d

4c0
=4π(1− ε/4)

Q.E.D.
The final result is therefore that the IR divergence of tr[Q(1)] comes

only from the last single diagram in (7.48), which gives Q
(1d)! It is a sin-

gle IR pole in 1/ε, since

Q̂
(1d)
k1,k2
= 1

4

(
1

4π

)2 1
2c0

4
ε
(−k2

1)(−k2
2)e
−(k2

1+k2
2)c0/2 (7.61)

hence

tr[Q(1d)] = 4
ε

(
1− ε

4

)2
. (7.62)
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7.5.5. IR Divergence and the Unstable Mode

We now look at the IR singularity in the other terms of the expan-
sion for L,

L= tr log[1l−Q]=−
∞∑
k=1

1
k

tr[Qk].

We have shown in Section 6.5 that the next terms tr[Qk] are of order
O(1) and can be computed explicitly at that order, since they are given
by the contribution of two diagrams only (see (6.46)) in Q, namely the

single bubble diagram , which is IR finite, and the diagram

, which is nothing but the IR divergent diagram of (7.48).

Thus we see that all the IR divergences of L(1), i.e. the term of order O(1)
in the 1/d expansion of L are contained in the last term of (6.53), namely
in the summation of the log series

L(1) � log
(

2− 4
ε

)
+ IR finite (but UV divergent) term when ε→0.

(7.63)

Now we have shown in Section. 6.6 that this IR singular log(2− 4/ε) is
nothing but the contribution of the smallest (and negative) eigenvalue of
the Hessian S ′′[V ] associated to the unstable eigenmode (dilation) for the
instanton

λmin=2− 4
ε
< 0. (7.64)

The conclusion of our analysis of the IR divergence of L= log det′[S ′′] is
that, at least at order 1/d, the IR divergence can be attributed entirely to
the contribution of the smallest eigenvalue. This is in fact quite natural,
since IR divergences must come from the large distance properties of the
fluctuations around the instanton configuration.

7.5.6. A Conjecture for the Large-d Behavior of the Unstable Mode

This IR divergence in our large-d estimate of the negative eigenvalue
λmin for the instanton Hessian does not mean that λmin is IR singular
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when ε= 0, but rather that λmin does not behave in the same way when
d→∞, depending on whether ε >0 or ε=0.

• If ε >0, we have seen that λmin=O(1), when d→∞.

• If d is finite and we take the limit ε→0, we have also λmin=O(1),
as can be checked explicitly for the case d=4, ε=0, where we recover the
classical φ4

4 instanton for the O(n=0) model for SAW.

• Therefore we expect that the IR pole in (7.64) means simply that
when we first take ε=0, then d→∞, λmin is no more of order O(1), but
becomes infinite (λmin→∞).

In fact we conjecture that for the renormalized theory, λmin scales as d

λmin(ε=0, d) � O(d), when d→∞ (7.65)

by analogy with the behavior of the leading term L(0), which is found to
behave as

d

ε
· 1
ε
, when d→∞ then ε→0

(7.66)
d

ε
· d, when ε→0 then d→∞

The first d/ε being an UV pole, and only the last 1
ε
∼ d being IR. Even

if this form of the conjecture is not correct, it is clear that once again for
the unstable mode the limits ε→0 and d→∞ do not commute.

8. CONCLUSION

In this paper we have shown how to compute at one loop the fluc-
tuations around the instanton in the self-avoiding manifold model, and
how this is related to the normalization for the large order asymptotics for
the SAM model. We have shown that the perturbative counterterms which
make the SAM model UV finite in perturbation theory do renormalize
(at one loop) the instanton contribution. We have constructed a system-
atic 1/d expansion, and studied the first terms of this expansion and the
interplay between the 1/d expansion and renormalization.

Although we have obtained many results in this article, and checked
at one loop the consistency of the instanton calculus for the SAM model,
several points deserve further studies:
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• It would be interesting to get a better understanding of how to
resum the IR divergences present in the 1/d expansion for the renormal-
ized theory at ε=0, or to find another approximation scheme which does
not suffer from IR divergences.

• We have checked that the instanton factor obtained by our method
is for D=1 (self-avoiding walk) equal to the factor obtained by field the-
oretical methods. However, it would be interesting in this case to compare
the approximate result that we obtain via the large-d limit with the exact
result (as was done for the instanton action in ref. 14).

• A practical application of the theoretical results obtained in this
paper would be to compare our large-order asymptotics with our explicit
calculations at 2-loop order for the scaling exponents for the SAM.(22,23)

Since the non-perturbative effects become small when d is large, it is
expected (and checked numerically) that the 2-loop estimates for the criti-
cal exponents are reliable for large d. Such a study would help our under-
standing of the domain of validity of the 2-loop calculations, and perhaps
suggest better resummation procedures than those used previously.

• For renormalized local field theories, in addition to instantons,
other contributions occur in the large-order asymptotics, denoted renor-
malons. They are associated both to the short-distance behavior of the
theory (UV renormalons) and to its large-distance behavior (IR renorma-
lons). We expect that such effects occur also for the SAM model at ε=0,
since for D=1 it is equivalent to the φ4 theory, but it is not known how
to treat these renormalon effects (if they are present) in the framework of
the SAM model, which is a multi-local theory.

APPENDIX A. MEASURE AND NORMALIZATIONS FOR THE

FUNCTIONAL INTEGRAL

In this appendix we precise the normalization for the functional inte-
gration over the fields and the treatment of the zero modes.

A.1. DeWitt Metric and Measure for the Functional Integral

We consider the free membrane model. The functional measure D[r]
is normalized as follows. We start from the DeWitt metric G over the
manifold configuration space C={r(x)}

G(δr, δr)= µ
2
0

2π

∫
M
dDx |δr(x)|2= µ

2
0

2π
‖δr‖22 . (A1)
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‖ . . .‖2 is the L2 norm over M. This metric depends explicitly on an (arbi-
trary) normalization mass scale µ0.

The corresponding measure is defined (formally) by D[r]=∏x d
dr(x)×√

detG. This corresponds to the normalization

∫
D[r] exp

(
−µ

2
0

2

∫
M
dDx r(x)2

)
=1. (A2)

With this normalization, a quadratic form A with kernel Aab, i.e. (Ar(x))a=∫
dDyAab(x,y)r

b(y), yields

∫
D[r] exp

(
−1

2

∫
M
dDx

∫
M
dDy r(x)A(x,y)r(y)

)
=det

[
A/µ2

0

]−1/2
. (A3)

To evaluate the partition function for the free membrane

Z0=
∫

D[r] exp
(
−1

2

∫
M
dDx∇r(x)2

)
,

we must treat separately the zero modes r0(x)= r0 of the scalar Laplacian
�x over M and the fluctuations r̃ orthogonal to the zero mode, G(r0, r̃)=
0. Let G(0) be the metric for the collective coordinate r0 of the zero mode
induced on the “moduli space” of minima of the action r(x)= r0 by the
DeWitt metric

G(δr0, δr0)=
µ2

0

2π

∫
M
dDx |δr0|2 =: G(0)ab δr

a
0δr

b
0⇒G

(0)
ab =

µ2
0

2π
Vol(M)δab.

(A4)

Hence the measure is

dµ(r0)=dd r0

√
det
(
G
(0)
ab

)=dd r0

[
µ2

0

2π
Vol(M)

]d/2
. (A5)

The integration over the modes r̃ orthogonal to the zero modes gives

(
det′

[
−�/µ2

0

])−d/2
, (A6)
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where det′ is the reduced determinant, that is the product over the non-
zero eigenvalues of the operator −�/µ2

0. Hence

Z0=
∫
dµ[r0]

(
det′

[
−�/µ2

0

])−d/2=
∫
dd r0 Z0 (A7)

with the partition function for the marked manifold Z0

Z0=
(

det′
[
−�
µ2

0

]
2π

µ2
0 Vol(M)

)−d/2
. (A8)

A.2. Zeta-function Regularization

The det′ requires UV regularization for its definition. We use the stan-
dard zeta-function regularization (see for instance refs. 13 and 24).

log(det′[−�/µ2
0])= tr′(log[−�/µ2

0])=− d

ds
ζ(s)

∣∣∣∣
s=0

, (A9)

where the zeta-function ζ(s) for the operator A=−�/µ2
0 is defined by the

sum over the non-zero eigenvalues λi

ζA(s)=
∑
λi �=0

λ−si (A10)

for Re(s) large enough, and by analytic continuation down to s = 0. tr′
means the trace over the subspace orthogonal to Ker(A) (w.r.t. to the met-
ric G).

The operator −� scales with the internal size L of the manifold M
as L−2. Therefore ζ(s) scales as

ζ(s)= (Lµ0)
2s ζ̄ (s), (A11)

where ζ̄ (s) is a scale invariant zeta function, which depends on the shape
of M but not on its size L.

If there is no global conformal anomaly, ζ(s) is analytic around s=0
and ζ ′(0)= ζ̄ ′(0)+2 log(Lµ0)ζ(0). Moreover, for any such A, one has

ζA(0)=−dim(Ker(A))=−number of zero modes of A. (A12)
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Indeed, one can show that if A has no zero-mode, for instance A=−�+
m2, then ζA(0)= tr(1)= 0 (this is analogous to the celebrated rule δ(0)=
0 in dimensional regularization), and if A has N zero modes, ζA(s) =
limε→0[ζA+ε(s)−Nε−s ], therefore ζA(0)= limε→0[ζA+ε(0)−N ]=−N . The
Laplacian � has one zero mode, and therefore

ζ(0)=−1, ζ ′(0)= ζ̄ ′(0)−2 log(Lµ0). (A13)

Using the fact that the size of the manifold is defined as

L=Vol(M)1/D (A14)

we obtain for the partition function

Z0=Ld(2−D)/2
[
eζ̄
′(0)

2π

]d/2
. (A15)

The dependence on the mass scale µ0 used to define the measure D[r] has
disappeared, as expected in the absence of a conformal anomaly.

A.3. Conformal Anomaly

It is known that there is no conformal anomaly if

1. D=1 and the manifold has no boundary (closed loop). This cor-
responds to a ring polymer.

2. D= 2, the manifold has no boundary and has Euler characteris-
tics χ=0. This corresponds to a closed membrane with the topology of a
torus (or a Klein bottle).

3. D non-integer. The model is defined by dimensional regulariza-
tion, as detailed in ref. 13. This is the relevant case for the ε-expansion.

If there is a conformal anomaly, ζ(0) �= −1 and there is an additional
power of Lµ0 in the partition function Z0, which depends explicitly on the
scale µ0. For instance for D=2 (membrane) it is known that

ζ(0)=−1+ c
6
χ, with c=1 the central charge for the free boson.

(A16)
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Hence

Z0 ∝ (Lµ0)
χ d/6. (A17)

APPENDIX B. INTEGRATION PATHS FOR THE FUNCTIONAL

INTEGRATION OVER V [r ]

In this appendix we discuss in more detail via the steepest descent
method the functional integration over V (r) and the relative position of
the instanton V inst and of the integration contour over V , as the argu-
ment θ of the coupling constant b varies in [−π,π ]. This is required to
treat properly the contribution of the unstable eigenmode of the Hessian
S ′′[V ] for the instanton.

For general θ ∈ [−π,π ] we know from (3.28) that the functional inte-
gral for the rescaled potential V (r) is normalized so that

∫
D[V ] exp

(
e−iθ

2g

∫
dd rV (r)2

)
=1 (B1)

(g is real positive). The effective action for V is given in (3.35)

Sθ [V ]=E [V ] − e
−iθ

2

∫
dd rV (r)2 (B2)

and for large V is dominated by the last term
∫
V 2. The steepest descent

integration path for V (r) in C is such that (at least for large |V |)

Arg(V )= π + θ
2

(B3)

(see Fig. 10). Thus it turns anti-clockwise from the positive real axis for
θ =−π to the imaginary axis for θ =0 to the negative real axis for θ =π .

For general θ the instanton V inst
θ is an extremum of Sθ [V ]. For neg-

ative coupling (θ =±π ), the instanton is known. It is the solution found
and studied in ref. 14, V inst±π =V inst; it is real and negative; it lies on the
steepest descent integration path given by Eq. (B3). Let us start from the
case θ =π , i.e. b lies above the discontinuity along the negative real axis,
and look at what happens when θ→0. From the solution for the instan-
ton at θ=π , V inst(r), the instanton for general θ <π , V inst

θ (r), is obtained
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Re V

Im V

θ=0θ=0

θ=π θ=−π

Fig. 10. Integration path for V as a function of θ =Arg(b).

by analytic continuation from real r to complex r. Indeed, we know from
ref. 14 that for a general V (r), under a scale transformation

V (r) → Vλ(r)=λ(2D/(2−D))V (λr) (B4)

the two terms in the effective action S[V ] scale, respectively, as

E [Vλ]=λ(2D/(2−D)) E [V ],
∫

r
V 2
λ =λ(2ε/(2−D))

∫
r
V 2. (B5)

If we assume that the instanton V inst(r), obtained in ref. 14 for real
r, can be continued analytically to complex r’s, then it is enough to take
instead of a real scaling factor λ a complex phase factor

λ= eiω (B6)

and to choose as phase

ω+θ = (π − θ)
2−D

2(D− ε) (B7)
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to know that

(
eiω
)(2D/(2−D))

V inst
(
eiωr

)
(B8)

with ω=ω+θ is an extremum of Sθ [V ]. Therefore the instanton for θ <π is

V inst
θ (r)= ei(π−θ)D/(D−ε) V inst

(
ei(π−θ)((2−D)/(2(D−ε)))r

)
. (B9)

It is clear that this instanton V inst
θ is now a complex field configuration,

since it involves both a“global Wick rotation” in r space and the multi-
plication by a global phase. In particular for θ =0 (real positive coupling
constant) the instanton is

V inst
θ=0(r)= eiπD/(D−ε) V inst

(
eiπ((2−D)/(2(D−ε)))r

)
. (B10)

The same argument applies for θ ∈ ]−π,0]. If we start from the same real
instanton at θ =−π and deform it to θ = 0 we obtain another instan-
ton, which is the complex conjugate configuration V

inst
θ=0 of the instanton

obtained by starting from θ =π .
How is V inst

θ located with respect to the steepest descent integration
path over V (r)? Rather than considering the functional integral over V (r)
for real r’s, it is more convenient to rotate the space coordinate r in the
complex plane. This is equivalent to deforming the time contour in the
complex plane when dealing with time correlation functions in finite tem-
perature QM and FT. Consider as bulk-space coordinates r̂ defined as

r̂= eiω+θ r (B11)

and make the change of variables in the functional integral for V

V (r) → V̂ (r̂)=V (r), r̂ real. (B12)

The functional measure becomes D̂[V̂ ], the measure for V̂ , and from (B1)
it is normalized so that

∫
D̂[V̂ ] exp

(
e−iθ

2g
e−idω+θ

∫
dd r̂ V̂ (r̂)2

)
=1. (B13)
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The steepest descent integration path for V̂ is therefore the line with argu-
ment �̂+θ

Arg(V̂ )= �̂+θ =
π + θ +d ω+θ

2
=π + π − θ

2
D

D− ε (B14)

(remember that ε=2D−d(2−D)/2). In the new variable V̂ the instanton
differs from the original real instanton V inst by a pure phase (see Eq. (B9))

V̂ inst
θ (r̂)= ei(π−θ)(D/(D−ε))V inst(r̂). (B15)

Since V inst is real and negative, its argument is π and therefore V̂ inst
θ (r̂)

has a fixed argument (independent of r̂) �̂inst
θ given by

Arg
(
V̂ inst
θ (r̂)

)
= �̂inst

θ =π + (π − θ)
D

D− ε . (B16)

For θ <π , �̂inst
θ is larger than �̂+θ

�̂inst
θ > �̂+θ if θ < π and ε < D. (B17)

This means that the instanton lies below the integration path for V̂ , see
Fig. 11. When θ→π the integration path becomes the real axis (with the
standard orientation from −∞ to +∞), while the complex instanton V̂ inst

becomes the real (and negative) instanton V inst.
With this result the steepest descent integration prescription for the

unstable mode around the instanton at θ=π is fixed. We boldly denote by
V this mode. The integration path from 0 to −∞ has to start from V =0
(the real vacuum, minimum of the action S[V ]), go on the real negative
axis up to the instanton V inst<0 which is a local extremum of S[V ] with
action S inst=S[V inst]>S[V =0]=0, then “turn right” (see Fig. 12) in the
upper half complex plane in order for the action to continue to increase,
while leaving the instanton below, then go to −∞. The first part of the
contour (from V inst to ∞) contributes only to the real part of the parti-
tion function Z for negative coupling (and is dominated by the classical
vacuum V =0). The second part of the contour (from −∞ to V inst) con-
tributes to the imaginary part of Z; in fact the dominant contribution to
the imaginary part comes from half the Gaussian integral in the imaginary
direction at the instanton

∫ V inst

V inst+i∞
dV (B18)
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Re V

Im V

θ = π

θ < π

θ = 0

Fig. 11. The integration path for V̂ and the instanton V̂ inst for θ =π , 0<θ <π and θ = 0
(we have set ε=0).

Instanton classical vacuum V=0

Fig. 12. Steepest descent integration paths for the unstable mode for θ =±π .
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and gives a factor

− i
1
2

∣∣∣det
(
S ′′[V inst]

)∣∣∣−1/2
(B19)

when compared to the full contribution of the Gaussian integral (the fac-
tor −i comes from the integration path, the factor 1/2 from the fact that
we integrate the unstable mode from i∞ to 0, not from i∞ to −i∞).

The same argument shows that for θ→−π the instanton is above the
real axis. Therefore for the unstable mode the steepest-descent integration
path has to stay below the real axis, with factor

i
1
2

∣∣∣det
(
S ′′[V inst]

)∣∣∣−1/2
.

These are the results used in Section 3.3.2.

APPENDIX C: SAW: D=1 SAM VERSUS O(n=0) FIELD THEORY

In this appendix we recall the “Laplace-De Gennes” equivalence between
the zero-component O(n= 0) φ4 field theory and the (weakly) self-avoid-
ing walk model, which corresponds to the case D=1 for the SAM model.
The first part of this appendix (Sections 1–3) is basically textbook mate-
rial, recalled here to fix the notations and the normalizations. We then
show that the standard instanton calculus for the O(n=0) model gives the
same result as our instanton calculus for the SAM model in the special
case D= 1. This provides an important check for the consistency of our
method.

C.1. Free Field and Brownian Walk

The action for the scalar free field in d-dimensional space is (note the
factor 1/4, which is not the most commonly used)9

S0[φ]=
∫

r

1
4
(∇rφ)

2+ m
2

2
(φ)2. (C1)

9Two choices of normalizations are convenient for polymers: Here we use S0[φ] =∫
r(1/4) (∇rφ)

2 + (m2/2)φ2, which corresponds to having the polymer action Spolymer =∫
x(1/2) (∇r(x))2. The other convenient choice is to use S0[φ] = ∫r 1/2 (∇rφ)

2 + (m2/2)φ2,
which corresponds to Spolymer =

∫
x(1/4) (∇r(x))2. This is the choice most often taken, see

e.g. ref. 4. Here we employ the first choice, since we want to use the most convenient
normalization for the polymer action. We also note that for both choices, e−Lm2

, with L

the length of the polymer is the weight in the Laplace-De Gennes transform.
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The two-points correlation function is

G0(r1, r2;m2) = 〈φ(r1)φ(r2)〉0=
〈
r1| 1
−�/2+m2

|r2

〉

=
∫ ∞

0
dL e−Lm

2 〈r1|eL�/2|r2〉, (C2)

and is the Laplace transform with respect to L of the heat kernel
K(r1, r2;L)=〈r1|eL�/2|r2〉, which admits the random-walk representation

K(r1, r2;L)=〈r1|eL�/2|r2〉=
∫

r(0)=r1
r(L)=r2

D[r] e−
∫
L

1
2 (ṙ)

2ds (C3)

with ṙ=dr/ds. To check the normalization, use the semi-classical estimate
for the small-L limit of the right hand side of (C3), K � exp (−|r|2/2L)
and check that 2∂K/∂L=�K. In particular at coinciding points

〈φ(r1)
2〉0=

〈
r1| 1
−�/2+m2

|r1

〉
=
∫ ∞

0
dL e−Lm

2 〈r1|eL�/2|r1〉 (C4)

and the heat kernel at coinciding points admits the closed random-walk
representation:

K(r1, r1;L)=〈r1|eL�/2|r1〉=
∫

r(0)=r(L)=r1

D[r] e−
∫
L (1/2)(ṙ)

2ds = Z0(r1)|D=1;L .

(C5)

It is the partition function for a closed one-dimensional membrane (i.e. a
closed polymer, or a loop) with length L, attached to the point r1. Simi-
larly for the one-loop connected diagram

1
2
〈φ(r1)

2φ(r2)
2〉conn

0 = 1
2

[
〈φ(r1)

2φ(r2)
2〉0 − 〈φ(r1)

2〉0〈φ(r2)
2〉0
]

=
[〈

r1

∣∣∣∣ 1
−�/2+m2

∣∣∣∣ r2

〉]2

=
∫ ∞

0
dL e−Lm

2
∫ L

0
dL1 ×∫

D[r] δd(r(0)− r1)δ
d(r(L1)− r2) e

− ∫L (1/2)(ṙ)2ds

=
∫ ∞

0
dL e−Lm

2
L−1 R(2)

0 (r1, r2)

∣∣∣
D=1,L

. (C6)
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This means that the first derivative w.r.t. m2 of the left hand side of (C6)
is the Laplace transform of the 2-point correlation function R(2)

0 for a free
closed loop with length L. Similarly connected correlators of a product
of N φ2 operators are associated to N -point correlation functions for the
closed loop.

C.2. SAW and O(n=0) Field Theory

It is well-known that this equivalence extends to the Edwards Model,
defined with the normalizations as in (2.12). The O(n)-invariant φ4 model
is defined by the action

S[ �φ]=
∫
dd r

1
4

(
∇r �φ

)2 + t

2

(
�φ 2
)
+ b

8

(
�φ 2
)2

(C7)

with �φ a n-component real vector field:

�φ={φa;a=1, n} (C8)

t=m2 is the squared mass, b is the coupling constant.
The model is equivalent to the Edwards model of polymer with

(weak) 2-chain repulsive contact interaction, as defined by the model of
(2.12) for the D= 1 case. The equivalence holds thanks to the very same
Laplace transform between correlation functions as in the free case (b=0).
It is valid to all orders in perturbation theory, that is as an asymptotic
series expansion for small b. The operator (1/2) �φ2(r) is represented by a
δ-distribution, or more formally10

1
2
�φ2(r) ↔

∫
dDx δ(r(x)− r). (C9)

For instance, for the 1-point correlators we have

lim
n→0

2
n

〈
1
2
�φ(r1)

2
〉
=
∫ ∞

0
dLe−Lt Z(r1)

∣∣
L

(C10)

10Note the factor of (1/2). Intuitively it is there to compensate for the fact that the two fields
of �φ2 can be contracted in two different ways. This also leads to a relative factor of four
between the interactions (2.12) and (C7).
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and for the two-points correlators

lim
n→0

2
n

〈
1
2
�φ(r1)

2 1
2
�φ(r2)

2
〉
=
∫ ∞

0
dLe−Lt L−1R(2)(r1, r2)

∣∣
L

(C11)

etc.

C.3. Instanton Calculus and Large-Orders for the O(n) Field Theory

We now recall the principle of instanton calculus and large-order esti-
mates for the scalar O(n) φ4 field theory, following the standard references.
This example is useful, since in the limit of n=0 it describes polymers, i.e.
D= 1 membranes. The field is a n-component real vector field �φ(r), �φ=
(φa;a=1, n). The action is the O(n)-invariant φ4 action

S[ �φ]=
∫
ddr

1
2

(
∇r �φ

)2 + t

2
( �φ 2) + b

8
( �φ 2)2 (C12)

t =m2 is the squared mass, b the coupling constant. We are interested in
observables O[ �φ] which are local monomials in φ with degree do in φ, the
simplest being the energy operator E

E[r1]= ( �φ)2(r1), degree(E)=dE=2. (C13)

The expectation value for the observable O is given by the standard
formula

〈O〉=
∫

D[ �φ]O[ �φ] e−S[ �φ]
/∫

D[ �φ] e−S[ �φ]. (C14)

We are interested in the large orders of the perturbative series expan-
sion in b. As we have seen, we have to use the dispersion relation in the
complex-b plane and consider what happens for small b close to the nega-
tive real axis, where b is complex and its argument is close to ±π . There-
fore we rescale the field

φ=|b|−1/2ϕ, with θ =Arg(b). (C15)

This gives

S[φ]= 1
|b| Sθ [ϕ], Sθ [ϕ]=

∫
ddr

1
2
(∇rϕ)2 + t

2
(ϕ 2) + eiθ

8
(ϕ 2)2

(C16)
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so that

〈O[φ]〉= |b|−(dO/2) 〈O[ϕ]〉θ,|b| = |b|−(dO/2)
∫ D[ϕ]O[ϕ] e−Sθ [ϕ]/|b|∫ D[ϕ] e−Sθ [ϕ]/|b| . (C17)

For small positive b the functional integral is dominated by the constant
classical saddle point

�ϕ0(r)= �ϕ0=0 (C18)

constant and absolute minima of Sθ for θ=0. The functional integral is in
fact well defined as long as −π <θ <+π . Now along the cut at b<0, that
is for θ=±π , another real extremum of the action Sθ becomes important,
the instanton

�ϕi = �ϕi(r; r0, �u0)=ϕi(r− r0)�u0. (C19)

The instanton is characterized by its position r0 in space, and its orienta-
tion �u0 in the internal n-dimensional space (�u0 being a unit vector in R

n).
ϕi(r) is the real finite-action solution of the equation

−�rϕi + t ϕi − 1
2
(ϕi)

3=0, (C20)

which is rotationally invariant around the origin (i.e. depends only on |r|)
and is non-zero except for |r|→∞ (or equivalently �0, this is enough to
define it uniquely).

The contribution of the instanton in the functional integral is at one
loop proportional to

e
− 1
|b|Sθ (ϕi )

[
Det′

[
S′′θ ( �ϕi)

]]−1/2
. (C21)

The measure for the collective coordinate r0 (the position of the instanton)
is easily obtained, since the metric is

hab= 1
2π |b|

∫
dd r

1
d
(∂a �ϕi∂b �ϕi)= 1

2π |b|d ‖
�∇ϕi‖22 δab. (C22)

Hence the measure is

dµ(r0)=dd r0

[
1

2π |b|d ‖
�∇ϕi‖22

]d/2
. (C23)
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The measure for the internal coordinate �u0 (the orientation) is

dµ(�u0)=d �u0

[
1

2π |b|
∫
dd r �ϕ 2

i

]((n−1)/2)

=
[

1
2π |b| ‖ �ϕi‖

2
2

]((n−1)/2)

(C24)

with d �u0 the standard measure on the unit sphere Sn−1 in R
n. For the

O(n) invariant observables which are of interest to us, the integration over
Sn−1 can be performed explicitly, giving the factor �n (the volume of the
unit sphere in R

n)

�n=
∫

Sn−1

dµ(�u0)=Vol(Sn−1)= 2π(n/2)

�(n/2)
. (C25)

Note that this volume factor �n vanishes as n when n→0. However, since
O(n) invariant observables such as �ϕ2/n behave in the background of the
instanton �ϕi as ϕ 2

i /n and are therefore of order 1/n, the factors n and n−1

compensate to give a finite n→0 limit.
Now the Hessian is a n×n matrix in internal space,

S′′ab(r, r
′)= ∂2Sθ (ϕ)

∂ϕa(r)∂ϕb(r′)
= δab(−�+ t) −

(
δab �ϕ2/2+ϕaϕb

)
. (C26)

Hence for the instanton background �ϕi=ϕi �u0 the Hessian can be written
as the product of the longitudinal operator

S′′l =−�+ t−
3
2
ϕ2
i (C27)

times n−1 transverse operators

S′′⊥ =−�+ t−
1
2
ϕ2
i . (C28)

S′′ =S′′l ⊗
(
S′′⊥
)n−1. Note that S′′l has d zero modes ψ 0

l µ
=∂µϕi and that S′′⊥

has one zero mode ψ0
⊥=ϕi , so S′′ has d+n−1 zero modes. Thus

det′(S′′)=det′(S′′l )det′(S′′⊥)
n−1 (C29)

and in the n=0 limit

det′(S′′)
∣∣
n=0=

det′(S′′l )
det′(S′′⊥)

. (C30)
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(c)

(a)

(b)

Fig. 13. Steepest descent integration path for the global ϕ variable for θ = 0 (a), θ =π (b)
and θ =−π (c). The black dot represents the classical vacua ϕ = 0 and the white dots the
2 instanton saddle-points ϕ=±ϕi .

S′′l has one (and only one) eigenvector ψ−l with negative eigenvalue λ−l <
−2t . Therefore det S′′l <0.11

To understand which sign must be chosen for the square-root of
the negative determinant [det(S′′)]−1/2 (+i or −i ?) we have to consider
the steepest-descent integration path for the global ϕ variable. It has to
go from Argϕ=π ± θ/4 to ∓θ/4, hence for θ =+π it is as depicted on
Fig. 13.

Hence the instanton contributes to the imaginary part of an observ-
able by a coefficient

∓ i
2

∣∣det′(S′′l )
∣∣−1/2 if θ =±π. (C31)

The rest goes into the real part together with the contribution of the clas-
sical vacuum ϕ0.

Putting things together, and using Eq. (3.12) we obtain for the imag-
inary part at b< 0 of the e.v. of the O(n) invariant observable O and for

11This is true for d <4, for d=4 there is no instanton solution for t >0, for t=0 there is an
instanton with an additional zero mode ψ0

l, s= (r∇r+1)ϕi corresponding to the scale invari-
ance of the massless theory under scale transformation ϕ(r)→λϕ(λr). The instanton at d=
4 is obtained from the instanton for d <4 by taking the limit d→4, t ∝4−d.
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arg(b)= θ =±π

Im〈O〉 = ∓ 1
2
|b|−dO/2 e−(1/|b|)

(
S[ϕi ]−S[ϕ0]

)

×
∣∣∣∣∣
det′(S′′l [ϕi ])

(
det′(S′′⊥[ϕi)]

)n−1

det(S′′[ϕ0])n

∣∣∣∣∣
−(1/2)

×
[

1
2π |b|d ‖

�∇ϕi‖22
]d/2 [ 1

2π |b| ‖ϕi‖
2
2

](n−1)/2

×�n
∫
dd r0 (O[ϕi [r0]]−O[ϕ0]) (C32)

while of course

Re(〈O〉)=O(ϕ0). (C33)

In particular for n=0 and O a product of energy operators E defined as

O1[r1] = lim
n→0

1
n

( �φ(r1)
)2
, (C34)

O2[r1, r2] = lim
n→0

1
n

( �φ(r1)
)2( �φ(r2)

)2 (C35)

and omitting the i subscript for “instanton”, we obtain

Im〈O1〉 = ∓ 1
2
|b|−((d+1)/2) e−(1/|b|)Si

∣∣∣∣det′S′′l
det′S′′⊥

∣∣∣∣
−(1/2)

×(2π)((1−d)/2)
[
‖∇ϕi‖22
d

]d/2
‖ϕi‖2 (C36)

Im〈O1[r1, r2]〉 = ∓ 1
2
|b|−((d+3)/2) e−(1/|b|)S

∣∣∣∣det′S′′l
det′S′′⊥

∣∣∣∣
−(1/2)

×(2π)((1−d)/2)
[
‖∇ϕ‖22
d

]d/2
‖ϕ‖−1

2 ϕ2�ϕ2(r1− r2)

(C37)



1012 David and Wiese

� denotes the usual convolution product f �g(r)=∫ dr′f (r′)g(r′ + r). Note
also a few useful results

ϕ0=0 → S[ϕ0]=0 (C38)

S[ϕi ]= 1
8

∫
dd r ϕ4

i (C39)
∫
dd r

(∇ϕi)2=− t
∫
dd r ϕ2

i +
1
2

∫
dd r ϕ4

i . (C40)

C.4. Instanton Calculus for the SAW Model of Polymers

Since the Edwards model for SAW is the inverse Laplace transform
w.r.t. t=m2 of the O(n) model, instanton calculus must take into account
this transformation and is (slightly) modified, as is explained here.

The action for the SAW model is

S[φ]=
∫

1
4
(∇φ)2+ t

2
φ2− |b|

8
(φ2)2. (C41)

We have by inverse Laplace transform, for a closed polymer of length L

Z(r;L) =
∫ +i∞

−i∞
dt

2iπ
eLt 〈O1(r; t)〉 (C42)

R(r1, r2;L) = L

∫ +i∞

−i∞
dt

2iπ
eLt 〈O2(r1, r2; t)〉. (C43)

So we consider the effective action

S[φ, t ]=
∫ [

1
4
(∇φ)2+ t

2
φ2− |b|

8
(φ2)2

]
− t L. (C44)

To factorize |b| and L we must rescale both φ, t and r with

φ(r) = |b|(−d/(2(d−2))) L−(1/(d−2))
√

2ϕ(r′),
r = |b|(1/(d−2)) L(1/(d−2)) r′,
t = |b|(−2/(d−2)) L(−2/(d−2))τ. (C45)

The action becomes

S[φ, t ]=2 [|b|Lε ]−(2/(d−2)) S[ϕ, τ ], ε= 4−d
2

(C46)
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and the effective action is now

S[ϕ, τ ] = S[ϕ]− τ
2
, S[ϕ] =

∫ (
1
4
(∇ �ϕ)2+ τ

2
�ϕ2− 1

4

( �ϕ2)2) . (C47)

The effective coupling constant is

beff =
1
2

[
|b|Lε

](2/(d−2))
(C48)

instead of |b|.
The instanton is given by the saddle point equations

�ϕ = ϕ �u0, −�2 ϕ+ τϕ−ϕ
3=0,

∫
ϕ2=1 (C49)

and the Hessian is

S ′′ =
[
S′′ �ϕ
�ϕt 0

]
. (C50)

It can still be separated into its transverse part, which is n− 1 times the
transverse operator S′′⊥

S′′⊥ =−
�

2
+ τ −ϕ2 (C51)

times the longitudinal part

S ′′l =
[
S′′l ϕ

ϕt 0

]
, S′′l =−

�

2
+ τ −3ϕ2, (C52)

which has d translational zero modes, namely the �µ =
[
ψµ
0

]
since

ϕ ·ψµ=
∫
ϕ∂µϕ= 1/2

∫
∂µϕ

2=0. It is then easy to show, denoting by P0 the
projector onto the kernel of S′′l generated by its zero modes, and defining
the “inverse” of S′′l as

[
1
S′′l

]′
= (S′′l +P0

)−1 − P0 (C53)
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that12

det′S ′′l = det
(
S′′l +P0 ϕ

ϕt 0

)
=det

(
S′′l +P0

)
det

(−ϕt (S′′l +P0)
−1ϕ

)

= −det′S′′l

(
ϕ ·
[

1
S′′l

]′
·ϕ
)
. (C54)

But it turns out that

[
1
S′′l

]′
·ϕ=− 1

2τ
(r ·∇ +1)ϕ. (C55)

Indeed, one can check that r∇ϕ as well as ϕ are orthogonal to ψµ and an
explicit calculation shows that

[
−�

2
+ τ −3ϕ2

]
(r ·∇ +1)ϕ=−2τ ϕ. (C56)

It follows that the additional factor in the determinant (which comes from
the integration over τ at the saddle point) is

−
(
ϕ ·
[

1
S′′l

]′
·ϕ
)
= 1

2τ

∫
ϕ(r∇+1)ϕ

= − d−2
4τ

∫
ϕ2=− d−2

4τ
(C57)

τ is >0 if d < 4, so this factor is negative for 2<d < 4, but the integra-
tion path over τ is also imaginary (it goes from −i∞ to +i∞). Thus the
integration over τ gives the factor

(2π)−1 |b|(−2/(d−2)) L(−2/(d−2)) (C58)

(coming from the measure (dτ/2iπ)) times

∣∣∣∣ 2π
beff ((d−2)/4τ)

∣∣∣∣
1/2

(C59)

12This is an application of the general formula for the determinant of bloc square matrices

det
[
A B

C D

]
=det [A] ·det

[
D−CA−1B

]
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coming from the Gaussian integration. This gives

[
π
d−2
τ

]−1/2

|b|(−1/(d−2))L(−d/(2(d−2))). (C60)

For the observable φ2/n the integration over the zero modes gives

2|b|(−d/(d−2))L(−2/(d−2)) �n

n

∫
ϕ2=2|b|(−2/(d−2))L(−2/(d−2)) (C61)

times the measure and determinant factors

[
‖ϕ‖2

2πbeff

]−1/2 [ ‖∇ϕ‖2
2πbeffd

]d/2 ∣∣∣∣ det′S′′l
det′S′′⊥

∣∣∣∣
−(1/2)

=
[
π |b|(2/(d−2))L((4−d)/(d−2))

](1−d/2) [‖∇ϕ‖2
d

]d/2 ∣∣∣∣ det′S′′l
det′S′′⊥

∣∣∣∣
−(1/2)

.

(C62)

Putting things together we get

Im Z(r;L) = ∓ 1
2
L−d/2

[|b|Lε](−2d/(d−2))
e
−(2S−τ)

[
|b|Lε

](−2/(d−2))

×
∣∣∣∣det′S′′l
det′S′′⊥

∣∣∣∣
−(1/2) [‖∇ϕ‖22

πd

]d/2(
d−2

4τ

)−(1/2)
. (C63)

Remember that |b|Lε is dimensionless. We show below that with our nor-
malizations and the equation for the instanton.

τ = (4−d)S, ‖ �∇ϕ‖2=2dS. (C64)

This simplifies slightly (C63)

Im Z(r;L) = ∓ 1
2
L−d/2

[|b|Lε](−2d/(d−2))
e
−(d−2)S

[
|b|Lε

](−2/(d−2))

×
∣∣∣∣det′S′′l
det′S′′⊥

∣∣∣∣
−(1/2) [

2S
π

]d/2 [4(4−d)S
d−2

]1/2

. (C65)
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C.5. d→4 Limit and Scale Invariance

The O(n) model at d=4 (ε=0) becomes scale invariant and the inst-
anton has an additional zero mode associated with dilations. For the SAW
model nothing special occurs when ε→ 0 (as far as global scale trans-
formations are concerned). Here we show in detail how the dilation zero
mode is absorbed in the transformation O(n) → SAW, and the form of the
instanton and of the large-order results at ε=0.

We first derive a few exact results. If ϕ is the instanton, solution of
((−�/2)+ τ)ϕ−ϕ3=0 and the Hessian is S′′l = (−�/2)+ τ −3ϕ2 then

[
1
S′′l

]′
ϕ = − 1

2τ
(r∇+1)ϕ, (C66)

[
1
S′′l

]′
ϕ3 = −1

2
ϕ, (C67)

(
ϕ3
∣∣∣(r∇+1)ϕ

)
=
∫
ϕ3(r∇+1)ϕ=

∫ (
1+ 1

4 r∇)ϕ4= 4−d
4

∫
ϕ4 (C68)

= −2τ
(
ϕ3
[ 1
S′′l

]′
ϕ
)
=−2τ

(
ϕ
[ 1
S′′l

]′
ϕ3
)

(C69)

= τ
(
ϕ|ϕ

)
= τ

∫
ϕ2. (C70)

The instanton action is

S=
∫

1
4
(∇ϕ)2+ τ

2
ϕ2− 1

4
ϕ4=

∫
1
2
ϕ

(
−�

2
+ τ

)
ϕ− 1

4
ϕ4= 1

4

∫
ϕ4.

(C71)

Hence

∫
ϕ2= 4−d

τ
S,

∫
(∇ϕ)2=2d S,

∫
ϕ4=4S. (C72)

Now remember that τ is fixed by the normalization
∫
ϕ2=1. In the limit

d→4, we must take the limit τ→0 to get the finite-action instanton. The
general solution of the equation −�ϕ=2ϕ3 at d=4 is

ϕ(r)d=4= 2r0

r2+ r2
0

, with corresponding actionSd=4= 2
3
π2. (C73)
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r0 is the instanton size. The size is arbitrary for the massless d=4 theory
by scale invariance. For r� r0, ϕ satisfies the linearized equation −ϕ′′ −
((d−1)/r)ϕ′ +2τϕ=0 and is a Bessel function

ϕ(r)∝ r1−d/2Kd/2−1(
√

2τ r) (C74)

and is such that

ϕ(r)�C r2−d for r0� r�1/
√
τ , ϕ(r)∝ e−r

√
2τ for r�1/

√
τ . (C75)

To match this behavior with the large-r behavior of the instanton at d=4,
the constant C must behave as

C(d)=2r0 (1+O(ε)) with ε=4−d. (C76)

For fixed r0, we must let τ→ 0, but at which rate? To evaluate this, use
the equation (C72) which tells us that τ

∫
ϕ2� εSd=4 when ε→ 0. When

evaluating
∫
ϕ2 in this limit, it is easy to see that it is the contribution of

the domain r0� r�1/
√
τ which dominates the integral, so that

∫
ϕ2 = �d

∫ ∞
0

dr rd−1ϕ(r)2�2π2
∫ 1/

√
τ

r0

dr rd−1
(
C r2−d

)2

� 2π2 (2r0)
2 ln(1/r0

√
τ). (C77)

Therefore τ goes indeed to zero as d→4 according to

ε=4−d�6 τ r2
0 ln

(
1/τ r2

0

)
. (C78)

Now if we consider the polymer, we have to keep its length L= 1
fixed, hence

∫
ϕ2 = 1. Then the instanton size r0 has to vanish together

with τ as ε→0.

1= ε
τ
S �⇒ τ � ε2π2

3
�⇒ r0� 1

2π
√

ln(1/ε)
. (C79)

Finally, we are interested in the smallest positive eigenvalue λ+ of the
Hessian S′′l and the corresponding eigenvector ψ+. As ε→ 0 we expect
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that λ+→0 and ψ+→ (r∇+1)ϕ the zero-mode for scale transformations.
In this limit λ+ can be estimated as follows

(
ϕ

∣∣∣
[

1
S′′l

]′
ϕ

)
� (ϕ|ψ+) 1

λ+
(ψ+|ϕ) 1

(ψ+|ψ+) . (C80)

But on the left hand side is equal to

−2−d
4τ

(ϕ|ϕ)� 1
2 τ
(ϕ|ϕ)= 1

2 τ
. (C81)

Using the asymptotics obtained for ϕ in the ε→0 limit

ϕ(r)�2 r0 r−2 �⇒ ψ+(r)�−2 r0 r−2 for r0� r�1/
√
τ , (C82)

we obtain

(ψ+|ϕ)�−(ϕ|ϕ)=−1 (ψ+|ψ+)� (ϕ|ϕ)=1 for ε→0. (C83)

Hence the smallest positive eigenvalue of S ′′l vanishes as ε, when d→4, as
expected

λ+�2 τ � 4π2

3
ε for ε→0. (C84)

Thus in the limit d→ 4 the Hessian S′′l gets an additional zero mode, so
that the zero-mode subtracted determinant det′ is discontinuous at d = 4
(limd→4 det′

[
S′′l
] �=det′

[
limd→4 S

′′
l

]
), but we can write in the semiclassical

estimates

det′
[
S′′l
] �d→4 λ+ ·det′

[
S′′l
∣∣
d=4

]
. (C85)

The singular factor τ 1/2 in Eq. (C63), which comes from the integration
over t , is canceled by the λ+ in det′S′′l , as expected, since we cannot have
IR divergences in the semiclassical estimate at d=4. We get the IR-finite
result

Im Z(r;L) = ∓ 1
2
L−2 |b|−4 e

− 4π2
3 |b|

∣∣∣∣det′S′′l
det′S′′⊥

∣∣∣∣
−(1/2)

16π2

9
, (C86)

where the IR singular terms coming from the dilation zero mode have
disappeared. The UV divergences are contained in the two determinants
det′[S′′].
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C.6. Comparison SAM Versus O(n) Field Theory for the Coefficient

of the Instanton

We are now ready to check that the determinant factor for the instan-
ton obtained by our method (non-local SAM model) is equal to the coeffi-
cient C86 obtained by instanton calculus in the O(n=0) local field theory.

We have already checked in ref. 14 that for D= 1 the instanton cor-
responds to the instanton for the φ4 field theory.

For D=1 the free energy density E [V ] is nothing but the ground state
energy E0 of a particle with unit mass in the potential V , i.e. the lowest
eigenvalue E0 of the Hamiltonian operator

H =− �r

2
+ V (r) (C87)

acting on functions over R
d . We denote ψ0 the corresponding ground-state

wave function.

E [V ]=E0, H ψ0=E0ψ0, ‖ψ0 ‖2=
∫

r
ψ2

0 =1. (C88)

The saddle-point equation is (using first order perturbation theory)

V (r)=− δE [V ]
δV (r)

=−〈ψ0| δH
δV (r)

|ψ0〉=−|ψ0(r)|2. (C89)

So it can be written as the non-linear Schrödinger equation + constraint

−1
2
�rψ0 − E0ψ0 − ψ3

0 =0, E0 such that
∫

r
ψ2

0 =1. (C90)

This is equivalent to the saddle-point equation for the polymer instanton

−�ϕ + τϕ − 1
2
ϕ3 = 0, τ such that

∫
ϕ2 = 1 (C91)

by the identification

ψ0(r)=ϕ(r), E0=−τ. (C92)

In particular for L=2 this gives ψ0=ϕ/2, r= r′ and E0= τ/2.
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Using second order perturbation theory we have

δ2E0

δV (r1)δV (r2)
=2ψ0(r1)

〈
r1

∣∣∣∣
[

1
E0−H

]′∣∣∣∣ r2

〉
ψ0(r2), (C93)

where as in a previous section the “inverse prime” of an Hermitian oper-
ator means the inverse of this operator restricted to the subspace orthog-
onal to its kernel

[
1

E0−H
]′
= 1
E0−H +P0

−P0, P0=|ψ0〉〈ψ0|. (C94)

If we denote by φ0 the operator which multiplies any function ψ by ψ0

ψ0 : ψ → ψ0ψ, (C95)

we rewrite (C93) as

δ2E0

δV (r1)δV (r2)
=
〈
r1

∣∣∣2ψ0

[
1

E0−H
]′
ψ0

∣∣∣r2

〉
. (C96)

The second derivative of the effective action � is thus

�′′ =1+2ψ0

[
1

E0−H
]′
ψ0. (C97)

If there where no problems with the zero modes, we could write

det
[

1+2ψ0

[
1

E0−H
]
ψ0

]
= det(H −E0−2ψ2

0 )

det(H −E0)

= det(−�/2−E0−3ψ2
0 )

det(−�/2−E0−ψ2
0 )

(C98)

quite similar to the ratio of determinants

det
(S ′′l

)
det

(S ′′⊥
) (C99)
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but the zero modes require some care. Let

A = H −E0=−�/2−E0−ψ2
0 , (C100)

B = H −E0−2ψ2
0 =−�/2−E0−3ψ2

0 , (C101)

where ψ0 is the zero mode of A and since ∂µA=B, Vµ= ∂µψ0 are the d
zero modes of B, while Wµ=ψ0∂µψ0 are the d zero modes of �′′ (as can
be seen by using Wµ=−∂µV/2, or by direct calculation).

We use the following simple result. Let E be a hermitian operator.
If E has zero modes, let n=dim(Ker(E)) and �i a basis of Ker(E) and
K0 =

∑
i |�i〉〈�i | the projector on Ker(E). Let F be another hermitian

operator such that its restriction to Ker(E), F ′ = K0FK0 is invertible.
Then

det[E+ εF ] = εndet′(E)det(F ′) with of course

det(F ′) = det
[〈�i |F |�j 〉]. (C102)

Now we consider

�′′ε =�′′ + ε1 (C103)

and obviously

det
(
�′′ε
)= εddet′

(
�′′
)
. (C104)

Rewrite

�′′ε =1+ ε−2ψ0
1−P0

H −E0+αP0
ψ0 (C105)

(this does not depend on the real number α). Then, since we now deal
with invertible operators, we have

det
(
�′′ε
) = det

[
(1+ ε)−2ψ2

0
1−P0

H −E0+αP0

]

= det
[(
(1+ ε)(H −E0+αP0)−2ψ2

0 (1−P0)
) 1
H −E0+αP0

]

= det
[
(1+ ε)(H −E0)−2ψ2

0 + ((1+ ε)α+2ψ2
0 )P0

]
det [H −E0+α]

. (C106)
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Obviously

det [H −E0+α]=α det′ [H −E0] . (C107)

Now consider the (non-hermitian) operator in the numerator

Bε= (1+ ε)(H −E0)−2ψ2
0 + ((1+ ε)α+2ψ2

0 )P0, (C108)

which is not very different from the hermitian operator

Cε= (1+ ε)(H −E0)−2ψ2
0 . (C109)

If ψ is a vector orthogonal to Ker(H −E0), i.e. 〈ψ |ψ0〉= 0 (or P0ψ = 0)
we have

Bεψ=Cεψ. (C110)

So the only difference between Bε and Cε is when applied to ψ0

Bεψ0= (1+ ε)αψ0, Cεψ0=−2ψ3
0 . (C111)

In a basis of the eigenvectors ψi of H −E0, Bε and Cε have, respectively,
the form

Bε=
(
(1+ ε)α bj

0 dij

)
, Cε=

(
a bj
bi dij

)
(C112)

with

a′ = (1+ ε)α a=−2
∫
ψ4

0

bi = −2
∫
ψ3

0ψi dij = (1+ ε)... (C113)

Thus

det
(
Bε
)= (1+ ε)α det(dij ) (C114)

while

det
(
Cε
)= (a−b ·d−1 ·bt)det(dij ). (C115)
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Now B=Cε=0 has d zero modes, the Vµ= ∂µψ0, hence

det
(
Cε
)= εddet′(B)det

[ 〈Vµ|H −E0|Vν〉
‖Vµ‖2

]
. (C116)

We have

‖Vµ‖2=
∫ (

∂µψ0
)2= 1

d

∫
| �∇ψ0|2, (C117)

and since (H −E0)Vµ=2ψ2
0Vµ

〈Vµ|H −E0|Vν〉=2
∫
ψ2

0 ∂µψ0∂νψ0= 2
d

∫
ψ2

0

∣∣ �∇ψ0
∣∣2 δµν, (C118)

since ψ0 is invariant by rotation. Hence

det
[ 〈Vµ|H −E0|Vν〉

‖Vµ‖2
]
=
[

2

∫
ψ2

0 | �∇ψ0|2∫ | �∇ψ0|2

]d
. (C119)

It remains to calculate the coefficient a− b · d−1 · bt . For this we use the
fact that

1
a−b ·d−1 ·bt =

〈
ψ0

∣∣∣∣ 1
Cε

∣∣∣∣ψ0

〉
, (C120)

which follows from (C112). Now a simple calculation shows that

B
(�r · �∇ψ0+ψ0

)= (−�/2−E0−3ψ2
0

)(�r · �∇ψ0+ψ0
)=2E0ψ0 (C121)

and since ψ0 is orthogonal to the kernel of B we can write

lim
ε→0

1
Cε
ψ0= 1

B
ψ0= 1

2E0

(�r · �∇ψ0+ψ0
)
. (C122)

Therefore, integrating by part and using the fact that ‖ψ0‖2=
∫
ψ2

0 =1 we
obtain

lim
ε=0

1
a−b ·d−1 ·bt =

1
2E0
〈ψ0|�r · �∇ψ0+ψ0〉

= 1
2E0

∫
ψ0
(�r · �∇ψ0+ψ0

)= 2−d
4E0

. (C123)
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Hence finally

det′
[
�′′
]= 2−d

4E0

[
2

∫
ψ2

0 | �∇ψ0|2∫ | �∇ψ0|2

]d
det′

[
H −E0−2ψ2

0

]
det′

[
H −E0

] . (C124)

Putting this result into (3.50) we get (using the fact that V =−ψ2
0 )

ImZ(b) = ∓1
2

∫
dd r0

[
V∥∥∇ψ0

∥∥2

πd

]d/2 [
2−d
4E0

]−(1/2)
e−VS

∣∣∣∣det′B
det′A

∣∣∣∣
−(1/2)

(C125)

to be compared to (C86).
For this remember that we are dealing with rescaled fields and cou-

plings (with tildes). So we go back to the original variables by rescaling

r→ [|b|LD]−((2−D)/(2(D−ε))) r, V→|b|−(D/(D−ε))L−(Dε/(D−ε)).
(C126)

It gives for D=1

r→ [|b|L]−(1/(d−2)) r, V→|b|−(2/(d−2))L−((4−d)/(d−2)). (C127)

Since Z(b)= ∫ dd rZ(b) we obtain

Im Z(b) = ∓1
2
|b|−(2d/(d−2))L−(d(6−d))/(2(d−2))

[∥∥∇ψ0
∥∥2

πd

]d/2

×
[

2−d
4E0

]−(1/2)
e−|b|

−(2/(d−2))L−((4−d)/(d−2)) �

∣∣∣∣det′B
det′A

∣∣∣∣
−(1/2)

.

(C128)

This is the same as (C86) since

E0 = −τ, B=S′′l , A=S′′⊥, ψ0=ϕ,
� = E0+ 1

2

∫
ψ4

0 = (d−2)S (C129)
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APPENDIX D. USEFULL FORMULAS FOR DERIVATIVES

OF TRACES AND DETERMINANTS

To compute the Hessian matrix (5.39) of the variational energy Evar
given by (5.28) we need to compute the matrix derivatives

∂2

∂M ∂M
tr
[
M
D/2
s

]
and

∂2

∂M ∂M

(
det

[
M
((D−2)/2)
var 1l+M

((D−2)/2)
s

])−(1/2)

with Ms = 1
2
(M+M

t ) (D1)

the symmetrized of the matrix M, at the special value M=Mvar1l. To com-
pute these derivatives it is useful to define the matrix Q(ij)=ei⊗ej as the
matrix which on the line i and row j is 1 and is 0 elsewhere,13 so that for
any matrix A={Aij }

∂A

∂Aij
=Q(ij),

∂As

∂Aij
= 1

2

(
Q(ij)+Q(j i)

)
. (D2)

Using this we can compute the first derivatives

∂

∂Aij
tr
[
A
α
]=α tr

[
Q(ij)A

α−1], ∂

∂Aij
det
[
A
]=det

[
A
]

tr
[
Q(ij)A

−1]

(D3)

and using the important formula

Q(ij)Q(kl)=Q(il) δjk. (D4)

the second derivatives for the trace

∂

∂Aij

∂

∂Akl
tr
[
A
α
s

]
A=A1l

= α(α−1)
2

Aα−2 (δikδjl+ δjkδil) (D5)

and for the determinant (n being the dimension of the matrix, so that
det[A1l]=An)

∂

∂Aij

∂

∂Akl

[
det(Aα1l+A

α
s )
]−(1/2)

A=A1l

= (2A
α)−(n/2)

16A2

(
α2δij δkl+α(2−α)(δilδjk+ δikδjl)

)
(D6)

13i.e. Q(ij)=
{
Qkl
(ij)= δikδjl

}
.
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APPENDIX E INSTANTON CONDENSTATES

Here we show that if V (r) is the instanton potential, and S its action,
we have the exact identities

〈V (r)〉V = −
∫

r
V (r)2=−2

(
1− ε

D

)−1
S, (E1)

〈(∇r)2〉V = −
d

2

∫
r
V (r)2=−d

(
1− ε

D

)−1
S, (E2)

where the ev 〈 〉V refers to the auxiliary model of a free (non-self-interact-
ing) manifold trapped in the potential V (r), with action

SV [r]=
∫

x

1
2
(∇r)2 + V (r) (E3)

The first equality in (E1) follows from the instanton equation of
motion 〈ρ〉+V =0 and from

〈V (r(x0))〉V =
∫

r
V (r) 〈δ(r− r(x0))〉V =

∫
r
V (r) 〈ρ(r)〉V , (E4)

while the second equality comes from a simple result of ref. 14, rederived
in Appendix F, see Eqs. (F6) and (F8).

The first equality in (E2) follows from the equations of motion for the
auxiliary model with action (E3) and the instanton equation. If we make
the change of variable

r(x)→ λ r(x) (E5)

in the functional integral we obtain (up to contact terms proportional
to δD(0) which vanishes in dimensional regularization, and which cor-
respond to the normal-product definition of the composite operator
(∇r)2= : (∇r)2:0)

〈(∇r)2〉V + 〈r·∇rV (r)〉V =0. (E6)

Now we can rewrite this second term as

〈r·∇rV (r)〉V =
∫

r
r·∇rV (r) 〈δ(r− r(x0))〉V (E7)
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and using the instanton equation and integrating by part we rewrite it as

〈r·∇rV (r)〉V =−
∫

r
r·∇rV (r)×V (r)=− 1

2

∫
r
r·∇r

(
V (r)2

)
= d

2

∫
r
V (r)2.

(E8)

Q.E.D.
Then we use (E1) to obtain the second equality in (E2).

APPENDIX F: A VARIATIONAL BOUND FOR THE SMALLEST

(NEGATIVE) EIGENVALUE

In this section we derive a bound for the (negative) smallest eigen-
value λ− of the Hessian S ′′ which is associated to the unstable mode. The
basic idea is as follows: The instability is visible by studing a rescaling of r
and correspondingly x, V and E . The unstable mode has a non-vanishing
overlap with this dilaton, which leads to a variational bound.

First of all, we recall the rescaling

r −→ rλ=λr, (F1)

x −→ xλ=λ
2

2−D x, (F2)

V (r) −→ Vλ(r)=λ
2D

(2−D) V (λr). (F3)

Under this rescaling the two terms of the effective action scale as

E [V ] −→ E [Vλ]=λ 2D
2−D E [V ]; (F4)

F [V ] −→ F [Vλ]=λ 2ε
2−D F [V ]. (F5)

Now we consider the full effective action

S[Vλ]=E [Vλ]+F [Vλ]. (F6)

The saddle-point equations for the instanton inforce

0=λ d
dλ

S[Vλ]
∣∣
V=V inst = 2D

2−D E [V inst]+ 2ε
2−DF [V inst], (F7)

which implies

E [V inst]=− ε
D

F [V inst] (F8)
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The dilaton-mode is

(
λ
d

dλ

)2

S[V inst
λ ] =

(
2D

2−D
)2

E [V inst]+
(

2ε
2−D

)2

F [V inst]

= 4ε(ε−D)
(2−D)2 F [V inst]. (F9)

Note that it does not matter, due to (F7), of how one exactly defines the
dilaton: one could use λ2d2/dλ2 instead.

On the other hand

(
λ
d

dλ

)2

S[V inst
λ ]= (ψ ·S ′′ ·ψ)

∣∣∣
V=V inst

(F10)

with

ψ(r)=λ d
dλ
V inst
λ (r). (F11)

Expanding in eigenmodes,

ψ ·S ′′ ·ψ
∣∣∣
V=V inst

=
∑
i

(ψ · ei) λi (ei ·ψ)�λmin (ψ ·ψ) . (F12)

Therefore we have the exact bound

λmin �
(
ψ ·S ′′ ·ψ)
(ψ ·ψ) =

(λ(d/dλ))2 S[V inst
λ ](

(d/dλ)V inst
λ (r) · (d/dλ)V inst

λ (r)
) . (F13)

Using

λ
d

dλ
Vλ= 2−D

2D
V + r∇V (r) (F14)

one obtains the still exact bound

λmin �−ε(D− ε)
2D2

∫
r
V 2(r)∫

r
[V (r)+ ((2−D)/2D)r∇V (r)]2 . (F15)

This bound can of course not be calculated exactly, if we do not know
exactly the instanton potential V . However, we can use the variational
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approximation for V inst to calculate the right hand side of (F15) approxi-
mately. Using for V (r) the Gaussian V (r)=exp(−r2/2) (all normalizations
and the width cancel at the end), one obtains

λmin �λvar
min=

−2ε(D− ε)
(2−D)(2D− ε)+ ε2

. (F16)

APPENDIX G: NORMALIZATION W.R.T. THE VARIATIONAL MASS

mvar IN THE VARIATIONAL AND POST-VARIATIONAL

CALCULATIONS

In this appendix we discuss the rescaling used in the variational and
large-d calculations of Section 5, where all quantities are expressed in
units of the variational mass scale m. This rescaling is in fact quite sim-
ple and natural, but it might become confusing in some calculations, so
we present it here carefully and thoroughly.

G.1. The Rescaling for x, r and g

The variational mass m satisfies Eq. (5.14), which amounts to

mD−ε=2c0(4πc0)
d/2, (G1)

where c0= c0(D) is the tadpole

c0= (4π)−D/2�((2−D)/2)= . (G2)

As in ref. 14 we perform the rescalings x→ x in D-space and r→ r in
d-space, with

x=m−1x, p=mp, r=m((D−2)/2)r, k=m(2−D)/2k (G3)

in order to set the variational mass to unity m→ m = 1. In the new
units the instanton potential V and its Fourier transform are rescaled as
V→V with

V (r)=mDV (r). (G4)
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In addition we also redefine the measure over r in d-space (and the corre-
sponding measure over k in reciprocal space) as

∫
dd r →

∫
r

with
∫

r
=mε−D

∫
dd r=mD

∫
dd r (G5)

∫
ddk
(2π)d

→
∫

k
with

∫
k
=mD−ε

∫
ddk
(2π)d

=m−D
∫

ddk
(2π)d

. (G6)

With this new measure the definition of the Fourier transform V̂ of V in
d-space is changed into

V̂ (k)=
∫

r
e−ikrV (r), V (r)=

∫
k
eikrV̂ (k) (G7)

and using (G4) the rescaling for the Fourier transform V̂ of the potential
V is V̂→ V̂ with

V̂ (k)= V̂ (k). (G8)

Finally since the functional integration measure D[V ] over V is norma-
lised by (B1), which involves the measure over r and the effective cou-
pling constant g, (this is equivalent to state that the metric G(δV, δV )=
(−e−iθ /4πg)

∫
r δV (r)

2 over the space of V configurations depends on g

and the measure over r), the rescaling of the r-integration measure (G5)
amounts to a rescaling of the effective coupling constant g→g with

g=mDg (G9)

or equivalently of the original coupling constant b→b with

b=mD−εb. (G10)

G.2. Consequences

G.2.1. Normalization for Integrals and Distributions

With these normalizations all powers of m disappear in the varia-
tional and post-variational calculations, but we have to be careful when we
perform Gaussian integrals. Indeed the following Gaussian integral gives

∫
k
e−k2c0 =2c0, (G11)
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where c0 is given by (G1). Indeed, we have using (G6) and Eq. (G1) for
the variational mass

∫
k
e−k2c0 =mD−ε(4πc0)

−d/2=m−D(4πGm)−d/2=m−D2m2Gm=2c0.

(G12)

One has also to take into account the fact that the Dirac distribution in r
space is now

δ(r)=mD−εδd(r) such that
∫

r
δ(r)=1. (G13)

G.2.2. Action and Hessians

Once this is done, all the results for the instanton and the large orders
still hold without any factor m, in particular (3.51)–(3.53). The effective
action S for the potential V is rescaled into S[V ] given simply by

S[V ]=E [V ]+ 1
2

∫
r
V 2 and is such that S[V ]=mDS[V ], (G14)

as well as its functional derivatives S ′[V ]=mDS ′[V ], S ′′[V ]=mDS ′′[V ],
etc. The instanton equation (3.41) is still

V̂ (k)+
〈
eikr(o)

〉
V
=0 (G15)

and the Hessian is still given by (4.2) and (4.3), i.e. (in reciprocal space)

S ′′ =1l−O with 1lx1,x2
= δ(x1−x2) and O=−E ′′,

i.e. Ôk1,k2
[V ] =

∫
x

〈
eik1r(o)eik2r(x)

〉conn

V
(G16)

The logarithm of the Hessian is now

L=L= log det′[S ′′]= tr log
[
1l−Q

]
=−

∞∑
k=1

1
k

tr
[
Q
k
]

(G17)
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with in particular

tr
[
Q

]
=
∫

k
Q̂

k,−k
, tr

[
Q

2
]
=
∫

k1

∫
k2

Q̂
k1,−k2

Q̂
k2,−k1

, etc. (G18)

Finally the zero-mode measure factor W is rescaled as expected

W=md W, W=
[

1
2πd

∫
r

(∇rV
)2]d/2

. (G19)

G.2.3. Instanton

In particular, this gives the variational instanton potential (obtained
by replacing the e.v. in the instanton potential 〈 〉V by e.v. in the qua-
dratic potential 〈 〉m=1 in (G15))

V̂ inst
var (k) = −e−k2c0/2

and by Fourier transform V inst
var (r) = −2c0 2d/2 e−r2/(2c0). (G20)

The instanton potential expanded in normal products w.r.t. the unit vari-
ational mass (i.e. : :=: :m=1) reads

V (r) = 2c0

∞∑
n=0

1
2nn!

(−1
2c0

)n
µn :

(
r2
)n

: (G21)

µn = 1
d(d+1) · · · (d+n−1)

∫
k

(
−k2

)n
V̂ (k)e−(k

2/2)c0 . (G22)

G.2.4. Renormalized Quantities and Counterterms

Finally let us see how the UV counterterms and the renormalized
action transform under this rescaling. In Section 4.4.2 the one-loop count-
erterm �1S for the effective action S was found to be given by (4.104)

�1S[V ]=− C1

ε

1
2

〈
(∇r)2

〉
V
− C2

ε

1
4

∫
r
V (r)2



Instanton Calculus for the Self-Avoiding Manifold 1033

and the renormalised effective action Sren[V ] was

Sren[V ]=S[V ]−g
D−ε
D

r (µL)−ε�1S[V ].

If we now perform the rescalings it is easy to see that

〈
(∇xr)2

〉
V
=mD

〈
(∇xr)2

〉
V

and
∫

r
V (r)2=mD

∫
r
V (r)2. (G23)

We define the rescaled renormalized couplings br and g
r

as for the bare
couplings (G9) and (G10)

gr=mDgr
and br=mD−εbr. (G24)

Then the rescaled renormalized effective action Sren[V ] defined by

Sren[V ]=mDSren[V ] (G25)

is given by

Sren[V ]=S[V ]−g D−εD
r

(µL)−ε�1S[V ] (G26)

with the rescaled one-loop counterterm �1S[V ] given by

�1S[V ]=mε�1S[V ] (G27)

and using (G23) we write �1S[V ] as

�1S[V ]=− C1

ε

1
2

〈
(∇xr)2

〉
V
− C2

ε

1
4
V (r)2 (G28)

with the rescaled counterterms

C1=mD−εC1 and C2=mD−εC2. (G29)

Now we use the explicit perturbative results (4.85)–(4.87) for the counter-
terms C1 and C2 and Eq. (G1) for the variational mass m and obtain for
the counterterms C1 and C2

C1=−
SD
2D

[
c0

d0

]1+(d/2)
, C2=

2 SD
(2−D)2

�[D/(2−D)]2
�[2D/(2−D)]

[
c0

d0

]1+(d/2)
,

(G30)
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where we remind that

SD=2πD/2/�[D/2], c0/d0=−22−D �[(2−D)/2]/�[(D−2)/2]
(G31)

and in the limit d→∞, ε fixed, C1 is of order O(1) since

C1=−π 23−ε e−(4−ε)γE [1+O(1/d)], γE Euler’s constant. (G32)

while C2 is exponentially small.

G.3. Final Results

With these notations, the final results for the large orders have the
same form, with the unrescaled quantities replaced by the rescales ones.

In the bulk of the paper, when we use these normalisations, we rely
on (G11) and (G21) and omit the underlinings � for all the quantities
and the fields such as x, r, V , g, S etc.
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